Synlett 2016; 27(07): 1100-1105
DOI: 10.1055/s-0035-1561316
letter
© Georg Thieme Verlag Stuttgart · New York

Synthesis of Trifluoromethylated Azetidines, Aminopropanes, 1,3-Oxazinanes, and 1,3-Oxazinan-2-ones Starting from 4-Trifluoromethyl-β-lactam Building Blocks

Hang Dao Thi
a   SynBioC Research Group, Department of Sustainable Organic Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium   Email: Matthias.Dhooghe@UGent.be
b   Institute of Chemistry, Vietnam Academy of Science and Technology, 18-Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
,
Lena Decuyper
a   SynBioC Research Group, Department of Sustainable Organic Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium   Email: Matthias.Dhooghe@UGent.be
,
Karen Mollet
a   SynBioC Research Group, Department of Sustainable Organic Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium   Email: Matthias.Dhooghe@UGent.be
,
Sara Kenis
a   SynBioC Research Group, Department of Sustainable Organic Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium   Email: Matthias.Dhooghe@UGent.be
,
Norbert De Kimpe
a   SynBioC Research Group, Department of Sustainable Organic Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium   Email: Matthias.Dhooghe@UGent.be
,
Tuyen Van Nguyen*
b   Institute of Chemistry, Vietnam Academy of Science and Technology, 18-Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
,
Matthias D’hooghe*
a   SynBioC Research Group, Department of Sustainable Organic Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium   Email: Matthias.Dhooghe@UGent.be
› Author Affiliations
Further Information

Publication History

Received: 26 November 2015

Accepted after revision: 13 December 2015

Publication Date:
20 January 2016 (online)


Abstract

This paper reports on the preparation of 4-(trifluoromethyl)azetidin-2-ones and their synthetic potential as eligible new building blocks for the construction of CF3-containing azetidines, diaminopropanes, aminopropanol derivatives, 1,3-oxazinanes, and 1,3-oxazinan-2-ones. This β-lactam building block approach provides a convenient new entry into trifluoromethylated scaffolds as useful synthetic intermediates en route to a variety of CF3-functionalized target structures.

Supporting Information

 
  • References and Notes

  • 8 Li B, Wang Y, Du D.-M, Xu J. J. Org. Chem. 2007; 72: 990
  • 9 Jiao L, Liang Y, Xu J. J. Am. Chem. Soc. 2006; 128: 6060
  • 10 Bonnet-Delpon D, Bégué JP, Legros J, Crousse B. WO 2003095415, 2003 ; Chem. Abstr. 2003, 139, 381242
  • 11 cis-3-Benzyloxy-1-(4-methoxyphenyl)-4-(trifluoromethyl)azetidine (4a) To an ice-cooled solution of AlCl3 (2.22 g, 16.62 mmol, 3 equiv) in dry Et2O (30 mL), LiAlH4 (0.63 g, 16.62 mmol, 3 equiv) was carefully added dropwise under N2. The reaction mixture was allowed to reach room temperature and was then heated for 30 min at reflux temperature. Afterwards, the reaction mixture was cooled to 0 °C and cis-azetidin-2-one 3a (1.94 g, 5.54 mmol, 1 equiv) was added. After stirring for 3 h at room temperature, the reaction was quenched with H2O (15 mL) and filtered through a short pad of Celite®. Extraction with CH2Cl2 (3 × 10 mL), drying (MgSO4), filtration of the drying agent, and evaporation of the solvent afforded cis-3-benzyloxy-1-(4-methoxyphenyl)-4-(trifluoromethyl)azetidine (4a) in 86% yield in high purity (>95% based on NMR); orange crystals; yield 86%; mp 59 °C. Elem. Anal. calcd. for C18H18F3NO2: C 64.09, H 5.38, N 4.15; found: C 63.96, H 5.14, N 4.12. IR (ATR): νmax = 1510, 1242, 1124, 813, 735 cm–1. 1H NMR (300 MHz, CDCl3): δ = 3.75 (3 H, s), 3.93 (1 H, dd, J = 8.3, 7.7 Hz), 4.17 (1 H, dd, J = 8.3, 4.4 Hz), 4.43–4.61 (2 H, m), 4.52 and 4.68 (2 × 1 H, 2 d, J = 11.6 Hz), 6.50–6.56 and 6.79–6.86 (4 H, 2 m), 7.29–7.38 (5 H, m). 13C NMR (75 MHz, CDCl3): δ = 55.7, 59.7, 67.4 (q, J = 31.2 Hz), 67.8, 72.3, 113.1, 114.7, 124.8 (q, J = 281.5 Hz), 127.6, 128.0, 128.5, 137.2, 142.5, 153.0. 19F NMR (282 MHz, CDCl3): δ = –70.03 (3 F, d, J = 6.6 Hz). MS (70 eV): m/z (%) = 338 (100) [M+ + H]. ESI-HRMS: m/z calcd for C18H19F3NO2 +: 338.1362 [M + H]+; found: 338.1365.
  • 13 syn-2-Methoxy-3-[N-(4-methoxyphenyl)-N-methylamino]-4,4,4-trifluorobutyl Acetate (6b) In a flame-dried flask under nitrogen atmosphere, Me3O·BF4 (0.17 g, 1.14 mmol, 2 equiv) was added to an ice-cooled solution of cis-3-methoxy-1-(4-methoxyphenyl)-4-(trifluoromethyl)azetidine (4b, 0.15 g, 0.57 mmol, 1 equiv) in dry CH2Cl2 (4 mL). After stirring for 2 h at room temperature, the solvent was evaporated, and the resulting residue was redissolved in MeCN (5 mL), after which NaOAc (0.19 g, 2.28 mmol, 4 equiv) was added. After stirring at reflux temperature for 2 h, the reaction mixture was poured into a sat. solution of NaHCO3 (5 mL), extracted with CH2Cl2 (3 × 5 mL), and washed with brine (3 × 5 mL). Drying (MgSO4), filtration of the drying agent, and evaporation of the solvent afforded syn-4,4,4-trifluoro-2-methoxy-3-[N-(4-methoxyphenyl)-N-methylamino]butyl acetate (6b), which was purified by means of preparative TLC (hexane–EtOAc); pale yellow oil, yield 86%; Rf = 0.07 (PE–EtOAc, 95:5). IR (ATR): νmax = 1745 (CO), 1512, 1242, 1097, 1053, 1038, 818 cm–1. 1H NMR (300 MHz, CDCl3): δ = 2.01 (3 H, s), 3.02 (3 H, s), 3.48 (3 H, s), 3.76 (3 H, s), 3.91 (1 H, qd, J = 5.5, 1.1 Hz), 4.14 (1 H, dd, J = 12.1, 6.6 Hz), 4.21–4.27 (2 H, m), 6.82 (4 H, br s). 13C NMR (75 MHz, CDCl3): δ = 20.6, 34.7, 55.6, 59.4, 61.9 (q, J = 26.9 Hz), 77.8, 114.6, 116.0, 125.9 (q, J = 288.5 Hz), 145.0, 152.9, 170.4. 19F NMR (282 MHz, CDCl3): δ = –68.36 (3 F, d, J = 7.9 Hz). MS (70 eV): m/z (%) = 336 (80) [M+ + H], 321 (100) [M+ – CH3]. ESI-HRMS: m/z calcd for C15H21F3NO4 +: 336.1417 [M + H]+; found: 336.1433.
  • 14 syn-2-Benzyloxy-4,4,4-trifluoro-N 3-(4-methoxyphenyl)-N 3-methyl-N 1-tert-butylbutane-1,3-diamine (7a) In a flame-dried flask under nitrogen atmosphere, Me3O·BF4 (0.13 g, 0.88 mmol, 2 equiv) was added to an ice-cooled solution of cis-3-benzyloxy-1-(4-methoxyphenyl)-4-(trifluoromethyl)azetidine (4a, 015 g, 0.44 mmol, 1 equiv) in dry CH2Cl2 (3 mL). After stirring for 2 h at room temperature, the solvent was evaporated, and the residue was redissolved in MeCN (3 mL), followed by the addition of tert-butylamine (0.13 g, 1.76 mmol, 4 equiv). After heating for 4 h at reflux temperature, the reaction mixture was poured into a sat. solution of NaHCO3 (4 mL), extracted with CH2Cl2 (3 × 3 mL), and washed with brine (3 × 3 mL). Drying (MgSO4), filtration of the drying agent, and evaporation of the solvent yielded syn-2-benzyloxy-4,4,4-trifluoro-N 3-(4-methoxyphenyl)-N 3-methyl-N 1-tert-butylbutane-1,3-diamine (7a), which was purified by means of preparative TLC (hexane–EtOAc, 95:5); pale yellow oil, yield 78%; Rf = 0.04 (PE–EtOAc, 95:5). IR (ATR): νmax = 3308 (NH), 1512, 1243, 1144, 1113, 1029, 814, 739 cm–1. 1H NMR (300 MHz, CDCl3): δ = 0.95 (9 H, s), 2.68 (1 H, dd, J = 12.1, 7.2 Hz), 2.77 (1 H, dd, J = 12.1, 5.5 Hz), 3.04 (3 H, s), 3.77 (3 H, s), 3.98–4.01 (1 H, m), 4.51 (1 H, dq, J = 8.4, 5.0 Hz), 4.59 and 4.67 (2 × 1 H, 2 d, J = 11.6 Hz), 6.83 and 6.89 (2 × 2 H, 2 d, J = 8.8 Hz), 7.29–7.36 (5 H, m). 13C NMR (75 MHz, CDCl3): δ = 28.9, 34.8, 42.4, 50.5, 55.8, 62.1 (q, J = 26.6 Hz), 73.6, 79.1, 114.7, 115.7, 126.4 (q, J = 288.4 Hz), 127.9, 128.5, 138.2, 145.2, 152.6. 19F NMR (282 MHz, CDCl3): δ = –67.85 (3 F, d, J = 9.2 Hz). MS (70 eV): m/z (%) = 425 (100) [M+ + H]. ESI-HRMS: m/z calcd for C23H32F3N2O2 +: 425.2410 [M + H]+; found: 425.2421.
    • 16a Bredikhina ZA, Pashagi AV, Savel’ev DV, Bredikhin AA. Russ. Chem. Bull. Int. Ed. 2001; 50: 436
    • 16b Weglicki WB. US 1998187334, 1999 ; Chem. Abstr. 1999, 131, 63464
    • 16c Bundgaards H. WO 8807044 A1, 1988 ; Chem. Abstr. 1989, 110, 75519.
  • 17 Philippe C, Milcent T, Ngoc Tam TN, Crousse B, Bonnet-Delpon D. Eur. J. Org. Chem. 2009; 5215
  • 18 syn-2-Benzyloxy-4,4,4-trifluoro-3-(4-methoxyphenylamino)butan-1-ol (8a) To an ice-cooled solution of cis-3-benzyloxy-1-(4-methoxyphenyl)-4-(trifluoromethyl)azetidin-2-one (3a; 0.39 g, 1.1 mmol, 1 equiv) in Et2O (7 mL) was added LiAlH4 (2.2 mL, 2.2 mmol, 2 equiv, 1 M in Et2O) in small portions whilst stirring under N2. After heating for 2 h at reflux temperature, the reaction mixture was cooled to 0 °C, quenched with H2O (5 mL) and filtered through a short pad of Celite®. Extraction with Et2O (3 × 5 mL), drying (MgSO4), filtration of the drying agent, and evaporation of the solvent afforded syn-2-benzyloxy-4,4,4-trifluoro-3-(4-methoxyphenylamino)butan-1-ol (8a), which was purified by recrystallization (heptane–EtOAc = 8:2); white crystals, yield 74%; mp 104 °C (from heptane–EtOAc 8:2). IR (ATR): νmax = 3418 (NH), 3372 (OH), 1516, 1246, 1151, 1122, 1065, 1031, 818 cm–1. 1H NMR (300 MHz, CDCl3): δ = 2.16 (1 H, br s), 3.50–3.56 and 3.60–3.66 (2 × 1 H, 2 m), 3.70 (3 H, s), 3.95 (1 H, dd, J = 6.6, 6.1 Hz), 4.00–4.04 (1 H, m), 4.15 (1 H, d, J = 9.9 Hz), 4.59 (1 H, d, J = 11.0 Hz), 4.66 (1 H, d, J = 11.0 Hz), 6.63 and 6.74 (2 × 2 H, 2 d, J = 8.8 Hz), 7.31–7.37 (5 H, m). 13C NMR (75 MHz, CDCl3): δ = 55.7, 56.4 (q, J = 28.8 Hz), 61.1, 73.6, 76.3, 114.9, 115.1, 126.0 (q, J = 285.0 Hz), 128.20, 128.25, 128.6, 137.4, 140.6, 152.9. 19F NMR (282 MHz, CDCl3): δ = –73.13 (3 F, d, J = 6.6 Hz). MS (70 eV): m/z (%) = 356 (100) [M+ + H]. ESI-HRMS: m/z calcd for C18H21F3NO3 +: 356.1468 [M + H]+; found: 356.1476.
  • 20 cis-5-Benzyloxy-3-(4-methoxyphenyl)-4-trifluoromethyl-1,3-oxazinane (9a) To a solution of syn-2-benzyloxy-4,4,4-trifluoro-3-(4-methoxyphenylamino)butan-1-ol (8a; 0.50 g, 1.41 mmol, 1 equiv) in THF (20 mL) was added formaldehyde (0.11 g, 1.41 mmol, 1 equiv, 37% solution in H2O). The resulting mixture was stirred for 4 h at room temperature, after which the solvent was removed in vacuo. Water (100 mL) was added to the mixture. Extraction with EtOAc (3 × 70 mL), drying (MgSO4), filtration of the drying agent, and evaporation of the solvent afforded cis-5-benzyloxy-3-(4-methoxyphenyl)-4-trifluoromethyl-1,3-oxazinane (9a), which was purified by means of recrystallization (hexane–EtOAc, 8:1); white crystals, yield 50%; mp 58.5 °C (from hexane–EtOAc, 8:1). IR (ATR): νmax = 1510, 1360, 1252, 1240, 1171, 1154, 1094, 1029, 983, 909, 810, 737, 696 cm–1. 1H NMR (400 MHz, CDCl3): δ = 3.78 (3 H, s), 3.85–3.92 (1 H, m), 3.96–4.03 (2 H, m), 4.08–4.17 (1 H, m), 4.48 and 4.65 (2 × 1 H, 2 d, J = 11.6 Hz), 4.80 and 4.85 (2 × 1 H, 2 d, J = 11.7 Hz), 6.82 and 7.09 (2 × 2 H, 2 d, J = 9.0 Hz), 7.28–7.35 (5 H, m). 13C NMR (100.6 MHz, CDCl3): δ = 55.6, 62.1 (q, J = 27.6 Hz), 65.8, 68.1, 71.9, 77.6, 114.5, 121.7, 125.8 (q, J = 285.0 Hz), 127.6, 128.0, 128.5, 137.3, 144.0, 155.5. 19F NMR (376 MHz, CDCl3): δ = –64.87 (3 F, d, J = 9.2 Hz). MS: m/z (%) = 368 (100) [M+ + H]. ESI-HRMS: m/z calcd for C19H21F3NO3 +: 368.1468 [M + H]+; found: 368.1480.
  • 22 cis-5-Benzyloxy-4-trifluoromethyl-3-(4-methoxyphenyl)-1,3-oxazinan-2-one (10a) To a solution of syn-2-benzyloxy-4,4,4-trifluoro-3-(4-methoxyphenylamino)butan-1-ol (8a, 0.1 g, 0.28 mmol, 1 equiv) in dry THF (20 mL) was added Et3N (0.06 g, 0.56 mmol, 2 equiv) at 0 °C. Ethyl chloroformate (0.12 g, 1.13 mmol, 4 equiv) was added dropwise to the solution. The mixture was stirred at room temperature for 4 h, the solvent was removed in vacuo, and the residue was redissolved in EtOAc (20 mL) and washed with H2O (2 × 20 mL). The aqueous phase was extracted with EtOAc (2 × 20 mL). Drying (MgSO4), filtration of the drying agent, and removal of the solvent in vacuo afforded cis-5-benzyloxy-3-(4-methoxyphenyl)-4-trifluoromethyl-1,3-oxazinan-2-one (10a), which was further purified by means of recrystallization from EtOH to white crystals, yield 66%; mp 141 °C (EtOH). IR (ATR): νmax = 1700 (CO), 1514, 1415, 1261, 1238, 1136, 1167, 1036, 827, 747 cm–1. 1H NMR (400 MHz, CDCl3): δ = 3.81 (3 H, s), 4.32–4.43 (3 H, m), 4.47–4.52 (1 H, m), 4.67 and 4.75 (2 × 1 H, 2 d, J = 11.6 Hz), 6.90 and 7.14 (2 × 2 H, 2 d, J = 8.9 Hz), 7.35–7.43 (5 H, m). 13C NMR (100.6 MHz, CDCl3): δ = 55.5, 60.9 (q, J = 28.0 Hz), 65.8, 68.0, 72.5, 114.6, 124.0 (q, J = 285.8 Hz), 128.0, 128.5, 128.7, 128.8, 134.3, 136.1, 151.3, 159.0. 19F NMR (376 MHz, CDCl3): δ = –66.96 (3 F, d, J = 7.7 Hz). MS: m/z (%) = 382 (100) [M+ + H]. ESI-HRMS: m/z calcd for C19H19F3NO4 +: 382.1261 [M + H]+; found: 382.1261.
  • 23 Ghandi M, Olyaei A, Raoufmoghaddam S. J. Heterocycl. Chem. 2009; 46: 914