Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2016; 27(07): 1100-1105
DOI: 10.1055/s-0035-1561316
DOI: 10.1055/s-0035-1561316
letter
Synthesis of Trifluoromethylated Azetidines, Aminopropanes, 1,3-Oxazinanes, and 1,3-Oxazinan-2-ones Starting from 4-Trifluoromethyl-β-lactam Building Blocks
Further Information
Publication History
Received: 26 November 2015
Accepted after revision: 13 December 2015
Publication Date:
20 January 2016 (online)
Abstract
This paper reports on the preparation of 4-(trifluoromethyl)azetidin-2-ones and their synthetic potential as eligible new building blocks for the construction of CF3-containing azetidines, diaminopropanes, aminopropanol derivatives, 1,3-oxazinanes, and 1,3-oxazinan-2-ones. This β-lactam building block approach provides a convenient new entry into trifluoromethylated scaffolds as useful synthetic intermediates en route to a variety of CF3-functionalized target structures.
Supporting Information
- Supporting information for this article is available online at http://dx.doi.org/10.1055/s-0035-1561316.
- Supporting Information
-
References and Notes
- 1a Sperka T, Pitlik J, Bagossi P, Tözsér J. Bioorg. Med. Chem. Lett. 2005; 15: 3086
- 1b Veinberg G, Shestakova I, Vorona M, Kanepe I, Lukevics E. Bioorg. Med. Chem. Lett. 2004; 14: 147
- 1c Sun L, Vasilevich NI, Fuselier JA, Hocart SJ, Coy DH. Bioorg. Med. Chem. Lett. 2004; 14: 2041
- 1d Nivsarkar M, Thavaselvam D, Prasanna S, Sharma M, Kaushik MP. Bioorg. Med. Chem. Lett. 2005; 15: 1371
- 1e Mollet K, D’hooghe M, De Kimpe N. Mini-Rev. Org. Chem. 2013; 10: 1
- 2a Kenis S, D’hooghe M, Verniest G, Reybroeck M, Nguyen Duc V, Dang Thi TA, Nguyen Van T, De Kimpe N. Org. Biomol. Chem. 2011; 9: 7217
- 2b Kenis S, D’hooghe M, Verniest G, Reybroeck M, Dang Thi TA, Pham The C, Pham Thi T, Törnroos KW, Nguyen Van T, De Kimpe N. Chem. Eur. J. 2013; 19: 5966
- 2c Kenis S, D’hooghe M, Verniest G, Dang Thi TA, Pham The C, Nguye Van T, De Kimpe N. J. Org. Chem. 2012; 77: 5982
- 3a Petrik V, Röschenthaler G.-V, Cahard D. Tetrahedron 2011; 67: 3254
- 3b Fantasia S, Welch JM, Togni A. J. Org. Chem. 2010; 75: 1779
- 3c Kuznetsova LV, Pepe A, Ungureanu IM, Pera P, Bernacki RJ, Ojima I. J. Fluorine Chem. 2008; 129: 817
- 3d Michaut V, Metz F, Paris J.-M, Plaquevent J.-C. J. Fluorine Chem. 2007; 128: 889
- 3e Huguenot F, Brigaud T. J. Org. Chem. 2006; 71: 2159
- 4a Straathof NJ. W, Tegelbeckers BJ. P, Hessel V, Wang X, Noel T. Chem. Sci. 2014; 5: 4768
- 4b Straathof NJ. W, Gemoets HP. L, Wang X, Schouten JC, Hessel V, Noel T. ChemSusChem 2014; 7: 1612
- 4c Parsons AT, Buchwald SL. 2011; 480: 224
- 4d Ji Y, Brueckl T, Baxter RD. Fujiwara Y, Seiple IB, Su S, Blackmond DG, Baran PS. Proc. Natl. Acad. Sci. U.S.A. 2011; 108: 14411
- 5a Mollet K, Catak S, Waroquier M, Van Speybroeck V, D’hooghe M, De Kimpe N. J. Org. Chem. 2011; 76: 8364
- 5b D’hooghe M, Dekeukeleire S, Leemans E, De Kimpe N. Pure Appl. Chem. 2010; 82: 1749
- 5c Dekeukeleire S, D’hooghe M, Törnroos KW, De Kimpe N. J. Org. Chem. 2010; 75: 5934
- 5d Van Brabandt W, Van Landeghem R, De Kimpe N. Org. Lett. 2006; 8: 1105
- 5e Van Brabandt W, De Kimpe N. Synlett 2006; 2039
- 6a D’hooghe M, Dekeukeleire S, De Kimpe N. Org. Biomol. Chem. 2008; 6: 1190
- 6b D’hooghe M, Dekeukeleire S, Mollet K, Lategan C, Smith PJ, Chibale K, De Kimpe N. J. Med. Chem. 2009; 52: 4058
- 6c Lee HK, Chun JS, Pak CS. Tetrahedron Lett. 2001; 42: 3483
- 6d Lee HK, Chun JS, Pak CS. Tetrahedron 2003; 59: 6445
- 6e Chincholkar PM, Kale AS, Gumaste VK, Deshmukh AR. A. S. Tetrahedron 2009; 65: 2605
- 7a Ojima I, Slater JC. Chirality 1997; 9: 487
- 7b Abouabdellah A, Bégué J.-P, Bonnet-Delpon D, Thanh Nga TT. J. Org. Chem. 1997; 62: 8826
- 7c Abouabdellah A, Bégué J.-P, Bonnet-Delpon D. Synlett 1996; 399
- 8 Li B, Wang Y, Du D.-M, Xu J. J. Org. Chem. 2007; 72: 990
- 9 Jiao L, Liang Y, Xu J. J. Am. Chem. Soc. 2006; 128: 6060
- 10 Bonnet-Delpon D, Bégué JP, Legros J, Crousse B. WO 2003095415, 2003 ; Chem. Abstr. 2003, 139, 381242
- 11 cis-3-Benzyloxy-1-(4-methoxyphenyl)-4-(trifluoromethyl)azetidine (4a) To an ice-cooled solution of AlCl3 (2.22 g, 16.62 mmol, 3 equiv) in dry Et2O (30 mL), LiAlH4 (0.63 g, 16.62 mmol, 3 equiv) was carefully added dropwise under N2. The reaction mixture was allowed to reach room temperature and was then heated for 30 min at reflux temperature. Afterwards, the reaction mixture was cooled to 0 °C and cis-azetidin-2-one 3a (1.94 g, 5.54 mmol, 1 equiv) was added. After stirring for 3 h at room temperature, the reaction was quenched with H2O (15 mL) and filtered through a short pad of Celite®. Extraction with CH2Cl2 (3 × 10 mL), drying (MgSO4), filtration of the drying agent, and evaporation of the solvent afforded cis-3-benzyloxy-1-(4-methoxyphenyl)-4-(trifluoromethyl)azetidine (4a) in 86% yield in high purity (>95% based on NMR); orange crystals; yield 86%; mp 59 °C. Elem. Anal. calcd. for C18H18F3NO2: C 64.09, H 5.38, N 4.15; found: C 63.96, H 5.14, N 4.12. IR (ATR): νmax = 1510, 1242, 1124, 813, 735 cm–1. 1H NMR (300 MHz, CDCl3): δ = 3.75 (3 H, s), 3.93 (1 H, dd, J = 8.3, 7.7 Hz), 4.17 (1 H, dd, J = 8.3, 4.4 Hz), 4.43–4.61 (2 H, m), 4.52 and 4.68 (2 × 1 H, 2 d, J = 11.6 Hz), 6.50–6.56 and 6.79–6.86 (4 H, 2 m), 7.29–7.38 (5 H, m). 13C NMR (75 MHz, CDCl3): δ = 55.7, 59.7, 67.4 (q, J = 31.2 Hz), 67.8, 72.3, 113.1, 114.7, 124.8 (q, J = 281.5 Hz), 127.6, 128.0, 128.5, 137.2, 142.5, 153.0. 19F NMR (282 MHz, CDCl3): δ = –70.03 (3 F, d, J = 6.6 Hz). MS (70 eV): m/z (%) = 338 (100) [M+ + H]. ESI-HRMS: m/z calcd for C18H19F3NO2 +: 338.1362 [M + H]+; found: 338.1365.
- 12a Lensen N, Marais J, Brigaud T. Org Lett. 2015; 17: 342
- 12b Ngoc Tam NT, Magueur G, Ourévitch M, Crousse B, Bégué J.-P, Bonnet-Delpon D. J. Org. Chem. 2005; 70: 699
- 12c Jiang J, Shah H, DeVita RJ. Org Lett. 2003; 5: 4101
- 12d Bravo P, Fustero S, Guidetti M, Volonterio A, Zanda M. J. Org. Chem. 1999; 64: 8731
- 13 syn-2-Methoxy-3-[N-(4-methoxyphenyl)-N-methylamino]-4,4,4-trifluorobutyl Acetate (6b) In a flame-dried flask under nitrogen atmosphere, Me3O·BF4 (0.17 g, 1.14 mmol, 2 equiv) was added to an ice-cooled solution of cis-3-methoxy-1-(4-methoxyphenyl)-4-(trifluoromethyl)azetidine (4b, 0.15 g, 0.57 mmol, 1 equiv) in dry CH2Cl2 (4 mL). After stirring for 2 h at room temperature, the solvent was evaporated, and the resulting residue was redissolved in MeCN (5 mL), after which NaOAc (0.19 g, 2.28 mmol, 4 equiv) was added. After stirring at reflux temperature for 2 h, the reaction mixture was poured into a sat. solution of NaHCO3 (5 mL), extracted with CH2Cl2 (3 × 5 mL), and washed with brine (3 × 5 mL). Drying (MgSO4), filtration of the drying agent, and evaporation of the solvent afforded syn-4,4,4-trifluoro-2-methoxy-3-[N-(4-methoxyphenyl)-N-methylamino]butyl acetate (6b), which was purified by means of preparative TLC (hexane–EtOAc); pale yellow oil, yield 86%; Rf = 0.07 (PE–EtOAc, 95:5). IR (ATR): νmax = 1745 (CO), 1512, 1242, 1097, 1053, 1038, 818 cm–1. 1H NMR (300 MHz, CDCl3): δ = 2.01 (3 H, s), 3.02 (3 H, s), 3.48 (3 H, s), 3.76 (3 H, s), 3.91 (1 H, qd, J = 5.5, 1.1 Hz), 4.14 (1 H, dd, J = 12.1, 6.6 Hz), 4.21–4.27 (2 H, m), 6.82 (4 H, br s). 13C NMR (75 MHz, CDCl3): δ = 20.6, 34.7, 55.6, 59.4, 61.9 (q, J = 26.9 Hz), 77.8, 114.6, 116.0, 125.9 (q, J = 288.5 Hz), 145.0, 152.9, 170.4. 19F NMR (282 MHz, CDCl3): δ = –68.36 (3 F, d, J = 7.9 Hz). MS (70 eV): m/z (%) = 336 (80) [M+ + H], 321 (100) [M+ – CH3]. ESI-HRMS: m/z calcd for C15H21F3NO4 +: 336.1417 [M + H]+; found: 336.1433.
- 14 syn-2-Benzyloxy-4,4,4-trifluoro-N 3-(4-methoxyphenyl)-N 3-methyl-N 1-tert-butylbutane-1,3-diamine (7a) In a flame-dried flask under nitrogen atmosphere, Me3O·BF4 (0.13 g, 0.88 mmol, 2 equiv) was added to an ice-cooled solution of cis-3-benzyloxy-1-(4-methoxyphenyl)-4-(trifluoromethyl)azetidine (4a, 015 g, 0.44 mmol, 1 equiv) in dry CH2Cl2 (3 mL). After stirring for 2 h at room temperature, the solvent was evaporated, and the residue was redissolved in MeCN (3 mL), followed by the addition of tert-butylamine (0.13 g, 1.76 mmol, 4 equiv). After heating for 4 h at reflux temperature, the reaction mixture was poured into a sat. solution of NaHCO3 (4 mL), extracted with CH2Cl2 (3 × 3 mL), and washed with brine (3 × 3 mL). Drying (MgSO4), filtration of the drying agent, and evaporation of the solvent yielded syn-2-benzyloxy-4,4,4-trifluoro-N 3-(4-methoxyphenyl)-N 3-methyl-N 1-tert-butylbutane-1,3-diamine (7a), which was purified by means of preparative TLC (hexane–EtOAc, 95:5); pale yellow oil, yield 78%; Rf = 0.04 (PE–EtOAc, 95:5). IR (ATR): νmax = 3308 (NH), 1512, 1243, 1144, 1113, 1029, 814, 739 cm–1. 1H NMR (300 MHz, CDCl3): δ = 0.95 (9 H, s), 2.68 (1 H, dd, J = 12.1, 7.2 Hz), 2.77 (1 H, dd, J = 12.1, 5.5 Hz), 3.04 (3 H, s), 3.77 (3 H, s), 3.98–4.01 (1 H, m), 4.51 (1 H, dq, J = 8.4, 5.0 Hz), 4.59 and 4.67 (2 × 1 H, 2 d, J = 11.6 Hz), 6.83 and 6.89 (2 × 2 H, 2 d, J = 8.8 Hz), 7.29–7.36 (5 H, m). 13C NMR (75 MHz, CDCl3): δ = 28.9, 34.8, 42.4, 50.5, 55.8, 62.1 (q, J = 26.6 Hz), 73.6, 79.1, 114.7, 115.7, 126.4 (q, J = 288.4 Hz), 127.9, 128.5, 138.2, 145.2, 152.6. 19F NMR (282 MHz, CDCl3): δ = –67.85 (3 F, d, J = 9.2 Hz). MS (70 eV): m/z (%) = 425 (100) [M+ + H]. ESI-HRMS: m/z calcd for C23H32F3N2O2 +: 425.2410 [M + H]+; found: 425.2421.
- 15a Laguerre M, Boyer C, Carpy A, Léger JM, Panconi E, Vaugien B, Cognic F. Eur. J. Med. Chem. 1993; 28: 77
- 15b Sharma D, Sharma RK, Bhatia S, Tiwari R, Mandal D, Lehmann J, Parang K, Olsen CE, Parmar VS, Prasad AK. Biochimie 2010; 92: 1164
- 15c Lee CE, Kick EK, Ellman JA. J. Am. Chem. Soc. 1998; 120: 9735
- 16a Bredikhina ZA, Pashagi AV, Savel’ev DV, Bredikhin AA. Russ. Chem. Bull. Int. Ed. 2001; 50: 436
- 16b Weglicki WB. US 1998187334, 1999 ; Chem. Abstr. 1999, 131, 63464
- 16c Bundgaards H. WO 8807044 A1, 1988 ; Chem. Abstr. 1989, 110, 75519.
- 17 Philippe C, Milcent T, Ngoc Tam TN, Crousse B, Bonnet-Delpon D. Eur. J. Org. Chem. 2009; 5215
- 18 syn-2-Benzyloxy-4,4,4-trifluoro-3-(4-methoxyphenylamino)butan-1-ol (8a) To an ice-cooled solution of cis-3-benzyloxy-1-(4-methoxyphenyl)-4-(trifluoromethyl)azetidin-2-one (3a; 0.39 g, 1.1 mmol, 1 equiv) in Et2O (7 mL) was added LiAlH4 (2.2 mL, 2.2 mmol, 2 equiv, 1 M in Et2O) in small portions whilst stirring under N2. After heating for 2 h at reflux temperature, the reaction mixture was cooled to 0 °C, quenched with H2O (5 mL) and filtered through a short pad of Celite®. Extraction with Et2O (3 × 5 mL), drying (MgSO4), filtration of the drying agent, and evaporation of the solvent afforded syn-2-benzyloxy-4,4,4-trifluoro-3-(4-methoxyphenylamino)butan-1-ol (8a), which was purified by recrystallization (heptane–EtOAc = 8:2); white crystals, yield 74%; mp 104 °C (from heptane–EtOAc 8:2). IR (ATR): νmax = 3418 (NH), 3372 (OH), 1516, 1246, 1151, 1122, 1065, 1031, 818 cm–1. 1H NMR (300 MHz, CDCl3): δ = 2.16 (1 H, br s), 3.50–3.56 and 3.60–3.66 (2 × 1 H, 2 m), 3.70 (3 H, s), 3.95 (1 H, dd, J = 6.6, 6.1 Hz), 4.00–4.04 (1 H, m), 4.15 (1 H, d, J = 9.9 Hz), 4.59 (1 H, d, J = 11.0 Hz), 4.66 (1 H, d, J = 11.0 Hz), 6.63 and 6.74 (2 × 2 H, 2 d, J = 8.8 Hz), 7.31–7.37 (5 H, m). 13C NMR (75 MHz, CDCl3): δ = 55.7, 56.4 (q, J = 28.8 Hz), 61.1, 73.6, 76.3, 114.9, 115.1, 126.0 (q, J = 285.0 Hz), 128.20, 128.25, 128.6, 137.4, 140.6, 152.9. 19F NMR (282 MHz, CDCl3): δ = –73.13 (3 F, d, J = 6.6 Hz). MS (70 eV): m/z (%) = 356 (100) [M+ + H]. ESI-HRMS: m/z calcd for C18H21F3NO3 +: 356.1468 [M + H]+; found: 356.1476.
- 19a Purser S, Moore PR, Swallow S, Gouverneur V. Chem. Soc. Rev. 2008; 37: 320
- 19b Welch JT. Tetrahedron 1987; 43: 3123
- 19c Park KB, Kitteringham NR, O’Neill PM. Annu. Rev. Pharmacol. Toxicol. 2001; 41: 443
- 20 cis-5-Benzyloxy-3-(4-methoxyphenyl)-4-trifluoromethyl-1,3-oxazinane (9a) To a solution of syn-2-benzyloxy-4,4,4-trifluoro-3-(4-methoxyphenylamino)butan-1-ol (8a; 0.50 g, 1.41 mmol, 1 equiv) in THF (20 mL) was added formaldehyde (0.11 g, 1.41 mmol, 1 equiv, 37% solution in H2O). The resulting mixture was stirred for 4 h at room temperature, after which the solvent was removed in vacuo. Water (100 mL) was added to the mixture. Extraction with EtOAc (3 × 70 mL), drying (MgSO4), filtration of the drying agent, and evaporation of the solvent afforded cis-5-benzyloxy-3-(4-methoxyphenyl)-4-trifluoromethyl-1,3-oxazinane (9a), which was purified by means of recrystallization (hexane–EtOAc, 8:1); white crystals, yield 50%; mp 58.5 °C (from hexane–EtOAc, 8:1). IR (ATR): νmax = 1510, 1360, 1252, 1240, 1171, 1154, 1094, 1029, 983, 909, 810, 737, 696 cm–1. 1H NMR (400 MHz, CDCl3): δ = 3.78 (3 H, s), 3.85–3.92 (1 H, m), 3.96–4.03 (2 H, m), 4.08–4.17 (1 H, m), 4.48 and 4.65 (2 × 1 H, 2 d, J = 11.6 Hz), 4.80 and 4.85 (2 × 1 H, 2 d, J = 11.7 Hz), 6.82 and 7.09 (2 × 2 H, 2 d, J = 9.0 Hz), 7.28–7.35 (5 H, m). 13C NMR (100.6 MHz, CDCl3): δ = 55.6, 62.1 (q, J = 27.6 Hz), 65.8, 68.1, 71.9, 77.6, 114.5, 121.7, 125.8 (q, J = 285.0 Hz), 127.6, 128.0, 128.5, 137.3, 144.0, 155.5. 19F NMR (376 MHz, CDCl3): δ = –64.87 (3 F, d, J = 9.2 Hz). MS: m/z (%) = 368 (100) [M+ + H]. ESI-HRMS: m/z calcd for C19H21F3NO3 +: 368.1468 [M + H]+; found: 368.1480.
- 21a Yang H, Goyal N, Ella-Menye J.-R, Williams K, Wang G. Synthesis 2012; 44: 561
- 21b Agirbas H, Sagdinc S, Kandemirli S, Kemal B. J. Mol. Struct. 2008; 892: 132
- 21c Wang G, Ella-Menye J.-R, Sharma V. Bioorg. Med. Chem. Lett. 2006; 16: 2177
- 22 cis-5-Benzyloxy-4-trifluoromethyl-3-(4-methoxyphenyl)-1,3-oxazinan-2-one (10a) To a solution of syn-2-benzyloxy-4,4,4-trifluoro-3-(4-methoxyphenylamino)butan-1-ol (8a, 0.1 g, 0.28 mmol, 1 equiv) in dry THF (20 mL) was added Et3N (0.06 g, 0.56 mmol, 2 equiv) at 0 °C. Ethyl chloroformate (0.12 g, 1.13 mmol, 4 equiv) was added dropwise to the solution. The mixture was stirred at room temperature for 4 h, the solvent was removed in vacuo, and the residue was redissolved in EtOAc (20 mL) and washed with H2O (2 × 20 mL). The aqueous phase was extracted with EtOAc (2 × 20 mL). Drying (MgSO4), filtration of the drying agent, and removal of the solvent in vacuo afforded cis-5-benzyloxy-3-(4-methoxyphenyl)-4-trifluoromethyl-1,3-oxazinan-2-one (10a), which was further purified by means of recrystallization from EtOH to white crystals, yield 66%; mp 141 °C (EtOH). IR (ATR): νmax = 1700 (CO), 1514, 1415, 1261, 1238, 1136, 1167, 1036, 827, 747 cm–1. 1H NMR (400 MHz, CDCl3): δ = 3.81 (3 H, s), 4.32–4.43 (3 H, m), 4.47–4.52 (1 H, m), 4.67 and 4.75 (2 × 1 H, 2 d, J = 11.6 Hz), 6.90 and 7.14 (2 × 2 H, 2 d, J = 8.9 Hz), 7.35–7.43 (5 H, m). 13C NMR (100.6 MHz, CDCl3): δ = 55.5, 60.9 (q, J = 28.0 Hz), 65.8, 68.0, 72.5, 114.6, 124.0 (q, J = 285.8 Hz), 128.0, 128.5, 128.7, 128.8, 134.3, 136.1, 151.3, 159.0. 19F NMR (376 MHz, CDCl3): δ = –66.96 (3 F, d, J = 7.7 Hz). MS: m/z (%) = 382 (100) [M+ + H]. ESI-HRMS: m/z calcd for C19H19F3NO4 +: 382.1261 [M + H]+; found: 382.1261.
- 23 Ghandi M, Olyaei A, Raoufmoghaddam S. J. Heterocycl. Chem. 2009; 46: 914