Synlett 2016; 27(05): 754-758
DOI: 10.1055/s-0035-1561320
cluster
© Georg Thieme Verlag Stuttgart · New York

Intermolecular Photocatalytic C–H Functionalization of Electron-Rich Heterocycles with Tertiary Alkyl Halides

Elizabeth C. Swift
Department of Chemistry, University of Michigan, 930 N. University Ave, Ann Arbor, MI 48109, USA   Email: crjsteph@umich.edu
,
Theresa M. Williams
Department of Chemistry, University of Michigan, 930 N. University Ave, Ann Arbor, MI 48109, USA   Email: crjsteph@umich.edu
,
Corey R. J. Stephenson*
Department of Chemistry, University of Michigan, 930 N. University Ave, Ann Arbor, MI 48109, USA   Email: crjsteph@umich.edu
› Author Affiliations
Further Information

Publication History

Received: 29 October 2015

Accepted after revision: 16 December 2015

Publication Date:
08 January 2016 (online)


Abstract

The coupling of tertiary alkyl halides with electron-rich arenes is promoted by visible-light photoredox catalysis. Tris[2-phenylpyridinato-C 2,N]iridium(III) [Ir(ppy)3] was the optimal catalyst, enabling direct reduction of the halide from the excited state, and thereby eliminating the requirement for a stoichiometric electron donor. High yields were obtained when the aromatic component was used in excess, although equimolar amounts afforded only slightly diminished yields. The reaction tolerates a number of functional groups, including allyl, ester, amide, or carbamate. The efficiency of this reaction has been improved through demonstration of scale-up in flow, and a new substituted Ir(ppy)3 derivative was isolated and characterized.

Supporting Information

 
  • References and Notes

  • 5 Fischer H, Radom L. Angew. Chem. Int. Ed. 2001; 40: 1340

    • For selected recent examples of malonates in the synthesis of pharmaceutically relevant molecules, see:
    • 11a Yamakawa N, Suemasu S, Okamoto Y, Tanaka K.-i, Ishihara T, Asano T, Miyata K, Otsuka M, Mizushima T. J. Med. Chem. 2012; 55: 5143
    • 11b Roth GJ, Heckel A, Colbatzky F, Handschuh S, Kley J, Lehmann-Lintz T, Lotz R, Tontsch-Grunt U, Walter R, Hilberg F. J. Med. Chem. 2009; 52: 4466
    • 11c Duan JJ.-W, Chen L, Lu Z, Jiang B, Asakawa N, Sheppeck JE. II, Liu R.-Q, Covington MB, Pitts W, Kim S.-H, Decicco CP. Bioorg. Med. Chem. Lett. 2007; 17: 266
  • 12 Mahboobi S, Kuhr S, Meindl W. Arch. Pharm. (Weinheim, Ger.) 1994; 327: 611
  • 14 Devery JJ. III, Douglas JJ, Nguyen JD, Cole KP, Flowers RA. II, Stephenson CR. J. Chem. Sci. 2015; 6: 537
  • 16 Lowry MS, Goldsmith JI, Slinker JD, Rohl R, Pascal RA, Malliaras GG, Bernhard S. Chem. Mater. 2005; 17: 5712
  • 17 Slinker JD, Gorodetsky AA, Lowry MS, Wang J, Parker S, Rohl R, Bernhard S, Malliaras GG. J. Am. Chem. Soc. 2004; 126: 2763
  • 18 Flamigni L, Barbieri A, Sabatini C, Ventura B, Barigelletti F. Top. Curr. Chem. 2007; 281: 143
  • 19 The reaction was found to proceed in a number of solvents; see Supporting Information for details.
  • 20 Nguyen JD, D’Amato EM, Narayanam JM. R, Stephenson CR. J. Nat. Chem. 2012; 4: 854
  • 21 Nguyen JD, Tucker JW. Konieczynska M. D, Stephenson CR. J. J. Am. Chem. Soc. 2011; 133: 4160
  • 22 Fors BP, Hawker CJ. Angew. Chem. Int. Ed. 2012; 51: 8850
  • 23 Diethyl 1H-Indol-2-yl(methyl)malonate (7); Typical Procedure A 7 mL vial equipped with magnetic stirrer bar was charged with diethyl-2-bromo-2-methylmalonate (1.0 equiv, 0.40 mmol, 0.10g), 2,6-lutidine (1.0 equiv, 0.40 mmol, 43 mg), Ir(ppy)3 (1 mol%, 4.0 µmol, 2.6 mg), and indole (5.0 equiv, 2.0 mmol, 0.23 g). Anhyd MeCN (0.5 mL, 0.8 M) was added, and the mixture was sparged with N2 for 15 min. It was then surrounded by a string of 1 W blue LEDs and stirred under N2 at r.t. for 24 h. The resulting mixture was diluted with EtOAc and extracted with H2O. The aqueous layer was extracted with EtOAc (2 × 5 mL). The combined organic layers were washed with brine, dried (Na2SO4), and concentrated in vacuo. The residue was purified by chromatography (silica gel, 0–5% EtOAc–hexane) to give a white solid; yield: 97 mg (83%); Rf  = 0.36 (10% EtOAc–hexane). IR (neat): 3372, 2972, 1732, 1707, 1454, 1263 cm–1. 1H NMR (400 MHz, CDCl3): δ = 9.08 (s, 1 H), 7.58 (d, J = 7.9 Hz, 1 H), 7.37 (d, J = 7.6 Hz, 1 H), 7.18 (t, J = 7.1 Hz, 1 H), 7.09 (t, J = 7.1 Hz, 1 H), 6.47 (s, 1 H), 4.27–4.23 (m, 4 H), 1.95 (s, 3 H), 1.28 (t, J = 7.1 Hz, 6 H). 13C NMR (176 MHz, CDCl3): δ = 170.4, 136.2, 134.7, 127.5, 122.2, 120.5, 119.7, 111.0, 101.4, 62.2, 54.3, 21.2, 14.0. HRMS (ESI): m/z [M + H]+ calcd for C16H20NO4: 290.1387; found: 290.1386. Dimethyl (4-{[tert-Butyl(dimethyl)silyl]oxy}butyl)(1H-indol-2-yl)malonate (14) Yellow oil; yield: 0.15 g (89%); Rf = 0.6 (20% EtOAc–hexane). IR (neat): 3426, 2951, 2356, 1729, 1456, 1254 cm–1. 1H NMR (700 MHz, CDCl3): δ = 9.60 (s, 1 H), 7.58 (d, J = 7.9 Hz, 1 H), 7.40 (d, J = 8.1 Hz, 1 H), 7.20 (t, J = 7.6 Hz, 1 H), 7.11 (t, J = 7.5 Hz, 1 H), 6.44 (s, 1 H), 3.78 (s, 6 H), 3.57 (t, J = 6.3 Hz, 2 H), 2.45–2.43 (m, 2 H), 1.54 (quintet, J = 7.1 Hz, 2 H), 1.29–1.25 (m, 2 H), 0.87 (s, 9 H), 0.02 (s, 6 H). 13C NMR (176 MHz, CDCl3): δ = 170.6, 135.8, 133.9, 127.7, 122.1, 120.5, 119.9, 111.3, 101.3, 62.6, 58.5, 53.2, 36.5, 32.8, 26.0, 21.1, 18.3, –5.2. HRMS (ESI): m/z [M + H]+ calcd for C23H36NO5Si: 434.2357; found: 434.2355. Methyl 3-(1H-Indol-2-yl)-2-oxooxepane-3-carboxylate (24) Purple oil; yield: 40 mg (35%); Rf = 0.25 (30% EtOAc–hexane). IR (neat): 3317, 2943, 2360, 1738, 1696, 1454, 1224 cm–1. 1H NMR (400 MHz, CDCl3): δ = 8.72 (s, 1 H), 7.59 (d, J = 7.9 Hz, 1 H), 7.38 (dd, J = 8.2, 0.7 Hz, 1 H), 7.20 (td, J = 7.6, 1.1 Hz, 1 H), 7.11 (td, J = 7.5, 0.8 Hz, 1 H), 6.50 (d, J = 1.3 Hz, 1 H), 4.19 (ddd, J = 12.7, 7.6, 1.9 Hz, 1 H), 4.08 (ddd, J = 12.7, 8.1, 1.8 Hz, 1 H), 3.78 (s, 3 H), 2.72 (dt, J = 14.7, 5.8 Hz, 1 H), 2.38 (dt, J = 14.7, 6.6 Hz, 1 H), 2.06 (quintet, J = 6.1 Hz, 2 H), 1.94–1.88 (m, 1 H), 1.85–1.80 (m, 1 H). 13C NMR (176 MHz, CDCl3): δ = 171.6, 169.6, 136.7, 133.6, 127.7, 122.8, 120.8, 120.2, 111.4, 102.3, 69.5, 59.8, 53.5, 31.3, 28.1, 24.1. HRMS (ESI): m/z [M + H]+ calcd for C16H18NO4: 288.1230; found: 288.1299. Diethyl Methyl(1-methyl-2-oxo-1,2-dihydropyridin-3-yl)malonate (29) Brown oil; yield: 0.11 g (80%); Rf = 0.5 (20% EtOAc–hexane). IR (neat): 2982, 1724, 1648, 1597, 1558, 1228 cm–1. 1H NMR (400 MHz, CDCl3): δ = 7.24–7.21 (m, 2 H), 6.08 (t, J = 6.9 Hz, 1 H), 4.24–4.13 (m, 4 H), 3.47 (s, 3 H), 1.74 (s, 3 H), 1.20 (t, J = 7.1 Hz, 6 H). 13C NMR (176 MHz, CDCl3): δ = 170.7, 161.2, 137.5, 135.4, 131.7, 105.0, 61.6, 57.4, 37.8, 20.8, 14.0. HRMS (ESI): m/z [M + Na]+ calcd for C14H19NNaO5: 304.1155; found: 304.1155.
  • 24 Smith FX, Evans GG. Tetrahedron Lett. 1972; 13: 1237