Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2016; 27(07): 1106-1009
DOI: 10.1055/s-0035-1561341
DOI: 10.1055/s-0035-1561341
letter
Total Synthesis of (+)-Tanikolide by a Traceless Stereoinduction Method Using Rhodium(II)-Catalyzed Oxonium Ylide Formation–[2,3]-Sigmatropic Rearrangement and NHC-Catalyzed Ring-Expansion Lactonization
Further Information
Publication History
Received: 11 December 2015
Accepted after revision: 03 January 2016
Publication Date:
26 January 2016 (online)
Abstract
The total synthesis of (+)-tanikolide was accomplished by a traceless stereoinduction method using the key steps of a Rh(II)-catalyzed oxonium ylide formation–[2,3]-sigmatropic rearrangement and an N-heterocyclic carbene-catalyzed ring-expansion lactonization of tetrahydrofurfural. This synthetic route is applicable to the divergent synthesis of tanikolide analogues.
Key words
N-heterocyclic carbine - oxonium ylides - rearrangement - rhodium - total synthesis - traceless stereoinductionSupporting Information
- Supporting information for this article is available online at http://dx.doi.org/10.1055/s-0035-1561341.
- Supporting Information
-
References and Notes
- 1 Singh IP, Milligan KE, Gerwick WH. J. Nat. Prod. 1999; 62: 1333
- 2a Kanada MR, Taniguchi T, Ogasawara K. Synlett 2000; 1019
- 2b Mizutani H, Watanabe M, Honda T. Tetrahedron 2002; 58: 8929
- 2c Tanaka H, Kozuki Y, Ogasawara K. Tetrahedron Lett. 2002; 43: 4175
- 2d Carda M, Rodríguez S, Castillo E, Bellido A, Díaz-Oltra S, Marco JA. Tetrahedron 2003; 59: 857
- 2e Koumbis AE, Dieti KM, Vikentiou MG, Gallos JK. Tetrahedron Lett. 2003; 44: 2513
- 2f Zhai H, Chen Q, Zhao J, Luo S, Jia X. Tetrahedron Lett. 2003; 44: 2893
- 2g Arasaki H, Iwata M, Makida M, Masaki Y. Chem. Pharm. Bull. 2004; 52: 848
- 2h Schomaker JM, Boran B. Org. Biomol. Chem. 2004; 2: 621
- 2i Ohgiya T, Nishiyama S. Tetrahedron Lett. 2004; 45: 8273
- 2j Ohgiya T, Nakamura K, Nishiyama S. Bull. Chem. Soc. Jpn. 2005; 78: 1549
- 2k Kita Y, Matsuda S, Fujii E, Horai M, Hata K, Fujioka H. Angew. Chem. Int. Ed. 2005; 44: 5857
- 2l Chen Q, Deng H, Zhao J, Lu Y, Heb M, Zhai H. Tetrahedron 2005; 61: 8390
- 2m Yajima T, Saito C, Nagano H. Tetrahedron 2005; 61: 10203
- 2n Wu F, Hong R, Khan J, Liu X, Deng L. Angew. Chem. Int. Ed. 2006; 45: 4301
- 2o Fujioka H, Matsuda S, Horai M, Fujii E, Morishita M, Nishiguchi N, Hata K, Kita Y. Chem. Eur. J. 2007; 13: 5238
- 2p Zhang C, Hosoda N, Asami M. Tetrahedron: Asymmetry 2007; 18: 2185
- 2q Vichare P, Chattopadhyay A. Tetrahedron: Asymmetry 2008; 19: 598
- 2r Gourder B, Lam WH. Angew. Chem. Int. Ed. 2010; 49: 8733
- 2s Doran R, Duggan L, Singh S, Duffy CD, Guiry PJ. Eur. J. Org. Chem. 2011; 7097
- 2t Matsuo K, Hikita J, Nishiwaki K. Heterocycles 2011; 83: 2601
- 2u Murai K, Nakamura A, Matsushita T, Shimura M, Fujioka H. Chem. Eur. J. 2012; 18: 8448
- 2v Xie Y, Sun M, Zhou H, Cao Q, Gao K, Niu C, Yang H. J. Org. Chem. 2013; 78: 10251
- 2w Reddi RN, Prasad PK, Sundalai A. Org. Lett. 2014; 16: 5674
- 2x Han X, Dong L, Geng C, Jiao P. Org. Lett. 2015; 17: 3194
- 3 Cardllina JH. II, Moore RE, Arnold EV, Clardy J. J. Org. Chem. 1979; 44: 4039
- 4a Pirrung MC, Werner JA. J. Am. Chem. Soc. 1986; 108: 6060
- 4b Roskamp EJ, Johnson CR. J. Am. Chem. Soc. 1986; 108: 6062
- 4c Murphy GK, West FG. Org. Lett. 2006; 8: 4359
- 4d Padwa A, Weingarten MD. Chem. Rev. 1996; 96: 223
- 4e Marmsäter FP, West FG. Chem. Eur. J. 2002; 8: 4346
- 4f Murphy GK, Stewart C, West FG. Tetrahedron 2013; 69: 2667
- 5a Jackson KL, Henderson JA, Motoyoshi H, Phillips AJ. Angew. Chem. Int. Ed. 2009; 48: 2346
- 5b Shimada N, Nakamura S, Anada M, Shiro M, Hashimoto S. Chem. Lett. 2009; 38: 488
- 5c Clark JS, Berger R, Hayes ST, Thomas LH, Morrison AJ, Gobbi L. Angew. Chem. Int. Ed. 2010; 49: 9867
- 5d Stewart C, McDonald R, West FG. Org. Lett. 2011; 13: 720
- 5e Clark JS, Labre F, Thomas LH. Org. Biomol. Chem. 2011; 9: 4823
- 5f Hodgson DM, Man S. Chem. Eur. J. 2011; 17: 9731
- 5g Clark JS, Vignard D, Parkin A. Org. Lett. 2011; 13: 3980
- 5h Yakura T, Ozono A, Matsui K, Yamashita M, Fujiwara T. Synlett 2013; 24: 65
- 5i Clark JS, Berger R, Hayes ST, Senn HM, Farrugia LJ, Thomas LH, Morrison AJ, Gobbi L. J. Org. Chem. 2013; 78: 673
- 5j Clark JS, Yang G, Osnowski AP. Org. Lett. 2013; 15: 1460
- 5k Clark JS, Yang G, Osnowski AP. Org. Lett. 2013; 15: 1464
- 5l Hodgson DM, Moreno-Clavijo E, Day SE, Man S. Org. Biomol. Chem. 2013; 11: 5362
- 5m Skrobo B, Deska J. Org. Lett. 2013; 15: 5998
- 5n Clark JS, Romiti F. Angew. Chem. Int. Ed. 2013; 52: 10072
- 5o Clark JS, Delion L, Farrugia LJ. Org. Lett. 2014; 16: 4300
- 5p Hodgson DM, Man S, Powell KJ, Perko Z, Zeng M, Moreno-Clavijo E, Thompson AL, Moore MD. J. Org. Chem. 2014; 79: 9728
- 6 Yakura T, Muramatsu W, Uenishi J. Chem. Pharm. Bull. 2005; 53: 989
- 7 Yakura T, Matsui K, Matsuzaka K, Yamashita M. Heterocycles 2009; 79: 353
- 8a Korthals KA, Wulff WD. J. Am. Chem. Soc. 2008; 130: 2898
- 8b Arisetti N, Reiser O. Org. Lett. 2015; 17: 94
- 9 Wang L, Thai K, Gravel M. Org. Lett. 2009; 11: 891
- 10 Szpilman AM, Cereghetti DM, Wurtz NR, Manthorpe JM, Carreira EM. Angew. Chem. Int. Ed. 2008; 47: 4335
- 11 Synthesis of (+)-tanikolide (1): Aqueous HCl (4 M, 1.8 mL) was added dropwise to a solution of MOM ether 17 (120 mg, 0.37 mmol) in THF (1.8 mL) at room temperature. After stirring at 50 °C for 6 h, the reaction mixture was saturated with NaCl. The mixture was extracted with CHCl3 (3 × 20 mL) and the combined organic layers were dried over anhydrous Na2SO4. The filtrate was concentrated in vacuo and the residue was purified by column chromatography (silica gel; EtOAc–hexane, 40%) to provide 1 (59 mg, 56%) as colorless crystals. Mp 39–40 °C (Lit.2g 39−41 °C); [α]D 24 +2.2 (c 0.65, CHCl3) {Lit. (Ref. 1) [α]D 25 +2.3 (c 0.65, CHCl3)}. IR (neat): 3395, 2923, 2851, 1701, 1468, 1265, 1051 cm–1. 1H NMR (400 MHz, CDCl3): δ = 3.67 (d, J = 12.0 Hz, 1 H), 3.54 (d, J = 12.0 Hz, 1 H), 2.94 (br. s, 1 H), 2.47 (t, J = 6.6 Hz, 1 H), 1.97–1.80 (m, 3 H), 1.75–1.61 (m, 3 H), 1.26 (br. s, 18 H), 0.88 (t, J = 6.8 Hz, 3 H). 13C NMR (100 MHz, CDCl3): δ = 172.0, 86.6, 67.3, 36.7, 31.8, 29.9, 29.7, 29.53, 29.51, 29.47, 29.3, 29.2. 26.6, 23.3, 22.6, 16.6, 14.0.
For reviews, see:
For recent examples, see: