RSS-Feed abonnieren
Bitte kopieren Sie die angezeigte URL und fügen sie dann in Ihren RSS-Reader ein.
https://www.thieme-connect.de/rss/thieme/de/10.1055-s-00000083.xml
Synlett 2016; 27(09): 1418-1422
DOI: 10.1055/s-0035-1561345
DOI: 10.1055/s-0035-1561345
letter
Application of {[4,4′-BPyH][C(CN)3]2} as a Bifunctional Nanostructured Molten Salt Catalyst for the Preparation of 2-Amino-4H-chromene Derivatives under Solvent-Free and Benign Conditions
Weitere Informationen
Publikationsverlauf
Received: 02. Dezember 2015
Accepted after revision: 30. Dezember 2015
Publikationsdatum:
02. Februar 2016 (online)
Abstract
The bifunctional nanostructured molten salt [4,4′-bipyridine]-1,1′-diium tricyanomethanide has been employed as a highly efficient and powerful catalyst for the preparation of 2-amino-4H-chromenes. A wide variety of aromatic aldehydes was condensed with malononitrile and resorcinol, 1-naphthol or 2-naphthol under mild and solvent-free conditions. This protocol has the advantages of short reaction times, high to excellent yields, and straightforward workup.
Supporting Information
- Supporting information for this article is available online at http://dx.doi.org/10.1055/s-0035-1561345.
- Supporting Information
-
References and Notes
- 1a Multicomponent Reactions . Zhu J, Bienayme H. Wiley-VCH; Weinheim: 2005
- 1b Ganem B. Acc. Chem. Res. 2009; 42: 463
- 1c Domling A, Ugi I. Angew. Chem. Int. Ed. 2000; 39: 3169
- 2a Gao Y, Yang W, Du DM. Tetrahedron: Asymmetry 2012; 23: 339
- 2b Konkoy CS, Fisck DB, Cai SX, Lan NC, Keana JF. W. PCT Int. Appl WO 0075123, 2000 ; Chem. Abstr. 2001, 134, 29313a.
- 3 Martinez AG, Marco LJ. Bioorg. Med. Chem. Lett. 1997; 7: 3165
- 4 Khafagy MM, El-Wahas AH. F. A, Eid FA, El-Agrody AM. Farmaco 2002; 57: 715
- 5 Dell CP, Smith CW. European Patent Appl. EP 537949, 1993 ; Chem. Abstr. 1993, 119139102d.
- 6 Hiramoto K, Nasuhara A, Michiloshi K, Kato T, Kikugawa K. Mutat. Res., Genet. Toxicol. Environ. Mutagen. 1997; 395: 47
- 7 Mohr SJ, Chirigos MA, Fuhrman FS, Pryor JW. Cancer Res. 1975; 35: 3750
- 8 Bianchi G, Tavaz A. Agric. Biol. Chem. 1987; 51: 2001
- 9 Anderson DR, Hegde S, Reinhard E, Gomez L, Vernier WF, Lee L, Liu S, Sambandam A, Snider PA, Masih L. Bioorg. Med. Chem. Lett. 2005; 15: 1587
- 10 Reynolds GA, Drexhage KH. Opt. Commun. 1975; 13: 222
- 11 Zollinger H. Color Chemistry . 3rd ed. Wiley-VCH; Weinheim: 2003
- 12 Bissell ER, Mitchell AR, Smith RE. J. Org. Chem. 1980; 45: 2283
- 13 Ellis GP. Chromenes, Harmones and Chromones . In The Chemistry of Heterocyclic of Compounds . Weissberger A, Taylor EC. John Wiley; New York: 1977. Chap. 2, 11-13
- 14 Hafez EA. A, Elnagdi MH, Elagamey AG. A, El-Taweel FM. A. A. Heterocycles 1987; 26: 903
- 15 Safari J, Zarnegar Z. J. Mol. Struct. 2014; 1072: 53
- 16 Dekamin MG, Eslami M, Maleki A. Tetrahedron 2013; 69: 1074
- 17 Shinde S, Rashinkar G, Salunkhe R. J. Mol. Liq. 2013; 178: 122
- 18 Safari J, Javadian L. Ultrason. Sonochem. 2015; 22: 341
- 19 Kale SR, Kahandal SS, Burange AS, Gawandeb MB, Jayaram RV. Catal. Sci. Technol. 2013; 3: 2050
- 20 Kundu SK, Mondal J, Bhaumik A. Dalton Trans. 2013; 10515
- 21 Baghbanian SM, Rezaeia N, Tashakkorianb H. Green Chem. 2013; 15: 3446
- 22 Hosseinchi Qareaghaj O, Mashkouri S, Naimi-Jamal MR, Kauppb G. RSC Adv. 2014; 4: 48191
- 23 Kundu SK, Bhaumik A. RSC Adv. 2015; 5: 32730
- 24 Maleki B, Sheikh S. RSC Adv. 2015; 5: 42997
- 25 Dekamin MG, Eslami M. Green Chem. 2014; 16: 4914
- 26 Kumar BS, Srinivasulu N, Udupi RH, Rajitha B, Reddy YT, Reddy PN, Kumar PS. J. Heterocycl. Chem. 2006; 43: 1691
- 27 Heravi MM, Baghernejad B, Oskooie HA. J. Chin. Chem. Soc. 2008; 55: 659
- 28 Lakshmi NV, Kiruthika SE, Perumal PT. Synlett 2011; 1389
- 29 Maggi R, Ballini R, Sartori G, Sartorio R. Tetrahedron Lett. 2004; 45: 2297
- 30 Kalla RM. N, Byeon SJ, Kim MS. H. Tetrahedron 2013; 69: 10544
- 31a Dupot J. Acc. Chem. Res. 2011; 44: 1223
- 31b Plechkova N, Seddon K. Chem. Soc. Rev. 2008; 37: 123
- 31c Olivier-Bourbigou H, Travers P, Chodorge JA. Pet. Technol. Q. 1999; Q4: 141
- 31d Lozano P, de Diego T, Carrie D, Vaultier M, Iborra JL. Biotechnol. Prog. 2003; 19: 380
- 32 Wasserscheid P, Keim W. Angew. Chem. Int. Ed. 2000; 39: 3772
- 33 Hayes R, Warr GG, Atkin R. Chem. Rev. 2015; 115: 6357
- 34 Taheri A, Lai B, Cheng Ch, Gu Y. Green Chem. 2015; 17: 812
- 35a Zolfigol MA, Baghery S, Moosavi-Zare AR, Vahdat SM, Alinezhad H, Norouzi M. RSC Adv. 2015; 5: 45027
- 35b Zolfigol MA, Afsharnadery F, Baghery S, Salehzadeh S, Maleki F. RSC Adv. 2015; 5: 75555
- 35c Zolfigol MA, Baghery S, Moosavi-Zare AR, Vahdat SM. RSC Adv. 2015; 5: 32933
- 35d Zolfigol MA, Baghery S, Moosavi-Zare AR, Vahdat SM, Alinezhad H, Norouzi M. RSC Adv. 2014; 4: 57662
- 36a Zolfigol MA, Khakyzadeh V, Moosavi-Zare AR, Zare A, Azimi SB, Asgari Z, Hasaninejad A. C. R. Chim. 2012; 15: 719
- 36b Zolfigol MA, Khazaei A, Moosavi-Zare AR, Zare A, Asgari Z, Khakyzadeh V, Hasaninejad A. J. Ind. Eng. Chem. (Amsterdam, Neth.) 2013; 19: 721
- 36c Moosavi-Zare AR, Zolfigol MA, Zarei M, Zare A, Khakyzadeh V. J. Mol. Liq. 2013; 186: 63
- 36d Moosavi-Zare AR, Zolfigol MA, Zarei M, Zare A, Khakyzadeh V, Hasaninejad A. Appl. Catal., A 2013; 467: 61
- 36e Moosavi-Zare AR, Zolfigol MA, Khaledian O, Khakyzadeh V, Farahani MD, Kruger HG. New J. Chem. 2014; 38: 2342
- 36f Moosavi-Zare AR, Zolfigol MA, Daraei M. Synlett 2014; 25: 1173
- 36g Moosavi-Zare AR, Zolfigol MA, Khakyzadeh V, Böttcher C, Beyzavi MH, Zare A, Hasaninejad A, Luque R. J. Mater. Chem. A 2014; 2: 770
- 36h Ghorbani M, Noura S, Oftadeh M, Gholamia E, Zolfigol MA. RSC Adv. 2015; 5: 55303
- 36i Zolfigol MA, Ayazi-nasrabadi R, Baghery S. RSC Adv. 2015; 5: 71942
- 37 Meng XY, Wang HJ, Wang CP, Zhang ZH. Synth. Commun. 2011; 41: 3477
- 38 Chaker A, Najahi E, Nepveu F, Chabchoub F. Arab. J. Chem. 2013; http://dx.doi.org/10.1016/j.arabjc.2013.11.045
- 39 Javanshir Sh, Safari M, Dekamin MG. Sci. Iran., Trans. C 2014; 21: 742
- 40 General Procedure for the Preparation of Nanostructured Molten Salt {[4,4′-BPyH][C(CN)3]2} To an aqueous solution of tricyanomethane (0.455 g, 5 mmol, 5 mL), 4,4′-bipyridine (0.39 g, 2.5 mmol) was added and the resulting mixture was stirred for 3 h at ambient temperature. The solvent was then evaporated under reduced pressure. The pale-yellow powder was dried under vacuum at 100 °C for 3 h. The obtained pale-yellow solid was filtered, washed repeatedly with diethyl ether to remove any unreacted starting materials, and then dried under vacuum. General Procedure for the Synthesis of 2-Amino-4H-chromene Derivatives through a Cascade Knoevenagel–Michael Cyclocondensation Sequence To a mixture of aryl aldehyde (1 mmol), malononitrile (0.066 g, 1 mmol), and phenol (1 mmol) in a round-bottom flask, [4,4′-bipyridine]-1,1′-diium tricyanomethanide (3 mg) was added and the mixture was stirred at either room temperature (Table 2, entries 1–5) or 80 °C (entries 6–19) in the absence of solvent for the appropriate time (Table 2). After completion of the reaction as monitored by TLC (n-hexane/ethyl acetate, 2:1), ethyl acetate (10 mL) was added and the reaction mixture was stirred and heated to reflux for 10 min. The resulting mixture was then washed with water (10 mL) and decanted to separate catalyst from the other materials (the reaction mixture was soluble in hot ethyl acetate and nanostructured molten salt catalyst was soluble in water). The aqueous layer was decanted, separated, and the water was removed to recover the catalyst for further use. The organic layer was dried, filtered, the solvent was removed, and the crude product was purified by recrystallization from ethanol (95%) to give the pure product with high to excellent yields (Table 2). Selected Characterization Data 2-Amino-4-(4-chlorophenyl)-7-hydroxy-4H-chromene-3-carbonitrile (Table 2, Entry 1) Yield: 94% (0.280 g); mp 239–241 °C. FTIR (KBr): 3463, 3343, 3251, 2193, 1643, 1506, 1402, 1154, 1111 cm–1. 1H NMR (400.13 MHz, DMSO-d 6): δ = 4.67 (s, 1 H, CH), 6.42 (d, 4 J = 2 Hz, 1 H, ArH), 6.50 (dd, 3 J= 8 Hz, 4 J = 2 Hz, 1 H, ArH), 6.79 (d, 3 J = 8 Hz, 1 H, ArH), 6.92 (s, 2 H, NH2), 7.19 (d, 3 J = 8 Hz, 2 H, ArH), 7.37 (d, 3 J = 8 Hz, 2 H, ArH), 9.73 (s, 1 H, OH). 13C NMR (100.61 MHz, DMSO-d 6): δ = 55.8, 102.2, 112.4, 113.2, 120.5, 128.5, 129.3, 129.9, 131.2, 145.3, 148.8, 157.2, 160.2. 2-Amino-4-(4-bromophenyl)-7-hydroxy-4H-chromene-3-carbonitrile (Table 2, Entry 4) Yield: 92% (0.315 g); mp 251–253 °C. FTIR (KBr): 3470, 3340, 3256, 2191, 1640, 1507, 1411, 1155, 1112 cm–1. 1H NMR (400.13 MHz, DMSO-d 6): δ = 4.66 (s, 1 H, CH), 6.42 (d, 4 J = 2.4 Hz, 1 H, ArH), 6.50 (dd, 3 J = 8 Hz, 4 J = 2.4 Hz, 1 H, ArH), 6.80 (m, 1 H, ArH), 6.92 (s, 2 H, NH2), 7.13 (d, 3 J = 8.4 Hz, 2 H, ArH), 7.50 (d, 3 J = 8.4 Hz, 2 H, ArH), 9.74 (s, 1 H, OH). 13C NMR (100.61 MHz, DMSO-d 6): δ = 55.7, 102.2, 112.5, 113.1, 119.7, 120.5, 129.6, 129.9, 131.5, 145.7, 148.8, 157.2, 160.2. 2-Amino-7-hydroxy-4-(3-methoxyphenyl)-4H-chromene-3-carbonitrile (Table 2, Entry 11) Yield: 89% (0.262 g); mp 180–182 °C. FTIR (KBr): 3446, 3340, 3219, 2192, 1641, 1508, 1410, 1154, 1115, 1048 cm–1. 1H NMR (400.13 MHz, DMSO-d 6): δ = 3.72 (s, 3 H, OMe), 4.59 (s, 1 H, CH), 6.41 (d, 4 J = 2.4 Hz, 1 H, ArH), 6.49 (dd, 3 J = 8 Hz, 4 J = 2.4 Hz, 1 H, ArH), 6.72–6.85 (m, 4 H, ArH), 6.87 (s, 2 H, NH2), 7.23 (t, 3 J = 8 Hz, 1 H, ArH), 9.67 (s, 1 H, OH). 13C NMR (100.61 MHz, DMSO-d 6): δ = 54.9, 56.1, 102.1, 111.5, 112.3, 113.4, 113.6, 119.5, 120.6, 129.7, 129.8, 147.9, 148.8, 157.1, 159.3, 160.3. 3-Amino-1-(4-dichlorophenyl)-1H-benzo[f]chromene-2-carbonitrile (Table 2, Entry 13) Yield: 90% (0.331 g); mp 240–242 °C. FTIR (KBr): 3463, 3324, 3190, 2200, 1661, 1589, 1407, 1237, 819 cm–1. 1H NMR (400.13 MHz, DMSO-d 6): δ = 5.72 (s, 1 H, CH), 7.03 (d, 3 J = 8.4 Hz, 1 H, ArH), 7.11 (s, 2 H, NH2), 7.27 (dd, 3 J = 8.4 Hz, 4 J = 2 Hz, 1 H, ArH), 7.35 (d, 3 J = 8.8 Hz, 1 H, ArH), 7.43–7.52 (m, 2 H, ArH), 7.58 (d, 3 J = 8.4 Hz, 1 H, ArH), 7.64 (d, 4 J = 2.4 Hz, 1 H, ArH), 7.94–7.99 (m, 2 H, ArH). 13C NMR (100.61 MHz, DMSO-d 6): δ = 55.0, 114.0, 118.2, 120.5, 120.6, 122.7, 123.8, 126.3, 126.6, 126.7, 127.6, 128.7, 132.6, 137.8, 142.6, 158.1, 159.9. 2-Amino-4-(4-methoxyphenyl)-4H-benzo[h]chromene-3-carbonitrile (Table 2, Entry 16) Yield: 90% (0.296 g); mp 188–190 °C. FTIR (KBr): 3415, 3324, 2194, 1663, 1604, 1509, 1377, 1253, 1104, 1023, 809 cm–1. 1H NMR (400.13 MHz, DMSO-d 6): δ = 3.72 (s, 3 H, OMe), 4.85 (s, 1 H, CH), 6.88 (d, 3 J = 8.4 Hz, 2 H, ArH), 7.10 (m, 1 H, NH2 and 1 H, ArH), 7.17 (d, 3 J = 8.4 Hz, 2 H, ArH), 7.56–7.66 (m, 4 H, ArH), 7.89 (d, 3 J = 8 Hz, 1 H, ArH), 8.24 (d, 3 J = 8 Hz, 1 H, ArH). 13C NMR (100.61 MHz, DMSO-d 6): δ = 34.8, 55.7, 114.1, 116.8, 119.7, 122.5, 125.1, 127.5, 128.5, 128.7, 128.9, 129.9, 130.1, 130.8, 131.4, 131.9, 132.1, 141.7, 147.1, 159.8.