Synlett 2016; 27(08): 1251-1254
DOI: 10.1055/s-0035-1561354
letter
© Georg Thieme Verlag Stuttgart · New York

Catalytic Performance of Hydrophobic Sulfonated Nanocatalysts CMK-5-SO3H and SBA-15-Ph-PrSO3H for Ecofriendly Synthesis of 2-Substituted Benzimidazoles in Water

Daryoush Zareyee*
Department of Chemistry, Qaemshahr Branch, Islamic Azad University, Qaemshahr, Iran   eMail: zareyeee@gmail.com
,
Sakineh Rostamian Tuyehdarvary
Department of Chemistry, Qaemshahr Branch, Islamic Azad University, Qaemshahr, Iran   eMail: zareyeee@gmail.com
,
Leila Allahgholipour
Department of Chemistry, Qaemshahr Branch, Islamic Azad University, Qaemshahr, Iran   eMail: zareyeee@gmail.com
,
Zinatossadat Hossaini
Department of Chemistry, Qaemshahr Branch, Islamic Azad University, Qaemshahr, Iran   eMail: zareyeee@gmail.com
,
Mohammad A. Khalilzadeh
Department of Chemistry, Qaemshahr Branch, Islamic Azad University, Qaemshahr, Iran   eMail: zareyeee@gmail.com
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Received: 20. November 2015

Accepted after revision: 11. Januar 2016

Publikationsdatum:
05. Februar 2016 (online)


Abstract

The hydrophobicity of environmentally benign organosulfonic acid-functionalized silica (SBA-15-Ph-PrSO3H) and sulfonic acid-based nanoporous carbon (CMK-5-SO3H) was assessed in relation to the green synthesis of 2-substituted benzimidazoles from aldehydes and benzene-1,2-diamine in open air in an aqueous medium. The results are rationalized in terms of the inclusion of the substrates inside hydrophobic cavities of the catalysts. Furthermore, the more hydrophobic and more water-resistant catalyst CMK-5-SO3H showed superior catalytic activity. Their excellent yields, their use of water as a green solvent, and their recyclability and environmentally friendly nature makes these catalysts important alternatives to classical acid catalysts.

 
  • References

  • 1 Brown KL. Chem. Rev. 2005; 105: 2075
  • 2 Sondhi SM, Singh N, Kumar A, Lozach O, Meijer L. Bioorg. Med. Chem. 2006; 14: 3758
  • 3 Tebbe MJ, Spitzer WA, Victor F, Miller SC, Lee CC, Sattelberg TR. Sr, McKinney E, Tang JC. J. Med. Chem. 1997; 40: 3937
  • 4 Roth M, Morningstar ML, Boyer PL, Hughes SH, Buckheit RW. Jr, Michejda CJ. J. Med. Chem. 1997; 40: 4199
  • 5 Migawa MT, Girardet J.-L, Walker JA. II, Koszalka GW, Chamberlain SD, Drach JC, Townsend LB. J. Med. Chem. 1998; 41: 1242
  • 6 Hisano T, Ichikawa M, Tsumoto K, Tsaki M. Chem. Pharm. Bull. 1982; 30: 2996
  • 7 Laplante SR, Jakalian A, Aubry N, Bousquet Y, Ferland JM, Gillard J, Lefebvre S, Poirier M, Tsantrizos YS, Kukolj G, Beaulieu PL. Angew. Chem. Int. Ed. 2004; 43: 4306
  • 8 Fekner T, Gallucci J, Chan MK. J. Am. Chem. Soc. 2004; 126: 223
  • 9 Dudd LM, Venardou E, Garcia-Verdugo E, Licence P, Blake AJ, Wilson C, Poliakoff M. Green Chem. 2003; 5: 187
  • 10 Wang L, Sheng J, Tian H, Qian C. Synth. Commun. 2004; 34: 4265
  • 11 VanVliet DS, Gillespie P, Scicinski JJ. Tetrahedron Lett. 2005; 46: 6741
  • 12 Keri RS, Hosamani KM, Seetharama Reddy HR, Shingalapur RV. Catal. Lett. 2009; 131: 552
  • 13 Lu J, Yang B, Bai Y. Synth. Commun. 2002; 32: 3703
  • 14 Gogoi P, Konwar D. Tetrahedron Lett. 2006; 47: 79
  • 15 Das B, Holla H, Srinivas Y. Tetrahedron Lett. 2007; 48: 61
  • 16 Zhang Z.-H, Yin L, Wang Y.-M. Catal. Commun. 2007; 8: 1126
  • 17 Srinivas U, Srinivas Ch, Narender P, Rao VJ. Palaniappan S. Catal. Commun. 2007; 8: 107
  • 18 Shingalapur RV, Hosamani KM. Catal. Lett. 2010; 137: 63
  • 19 Gadekar LS, Arbad BR, Lande MK. Chin. Chem. Lett. 2010; 21: 1053
  • 20 Jacob RG, Dutra LG, Radatz CS, Mendes SR, Perin G, Lenardão EJ. Tetrahedron Lett. 2009; 50: 1495
  • 21 Chari MA, Shobha D, Kenawy E.-R, Al-Deyab SS, Subba Reddy BV, Vinu A. Tetrahedron Lett. 2010; 51: 5195
  • 22 Ruiz VR, Corma A, Sabater MJ. Tetrahedron 2010; 66: 730
  • 23 Bachhav HM, Bhagat SB, Telvekar VN. Tetrahedron Lett. 2011; 52: 5697
  • 24 Chari MA, Shobha D, Sasaki T. Tetrahedron Lett. 2011; 52: 5575
  • 25 Rathod SB, Lande MK, Arbad BR. Bull. Korean Chem. Soc. 2010; 31: 2835
  • 26 Itoh T, Nagata K, Ishikawa H, Ohsawa A. Heterocycles 2004; 63: 2769
  • 27 Trivedi R, De SK, Gibbs RA. J. Mol. Catal. A: Chem. 2006; 245: 8
  • 28 Pawar SS, Dekhane DV, Shingare MS, Thore SN. Chin. Chem. Lett. 2008; 19: 1055
  • 29 Ghosh P, Mandal A. Catal. Commun. 2011; 12: 744
  • 30 Dhakshinamoorthy A, Kanagaraj K, Pitchumani K. Tetrahedron Lett. 2011; 52: 69
  • 31 Sun PP, Hu ZX. J. Heterocycl. Chem. 2006; 43: 773
  • 32 Varala R, Enugala R, Kotra V, Adapa SR. Chem. Pharm. Bull. 2007; 55: 1254
  • 33 Salehi P, Dabiri M, Zolfigol MA, Otokesh S, Baghbanzadeh M. Tetrahedron Lett. 2006; 47: 2557
  • 34 Li CJ, Chang TH. Organic Reactions in Aqueous Media . Wiley; New York: 1997
  • 35 Organic Synthesis in Water . Grieco PA. Blackie Academic & Professional; London: 1998
  • 36 Mbaraka IK, Shanks BH. J. Catal. 2005; 229: 365
  • 37 Melero JA, Bautista LF, Morales G, Iglesias J, Briones D. Energy Fuels 2009; 23: 539
  • 38 Liu FJ, Meng XJ, Zhang YL, Ren LM, Nawaz F, Xiao F.-S. J. Catal. 2010; 271: 52
  • 39 Kassaee MZ, Masrouri H, Movahedi F. Appl. Catal., A 2011; 395: 28
  • 40 Mondal J, Sen T, Bhaumik A. Dalton Trans. 2012; 41: 6173
  • 41 Morales G, Athens G, Chmelka BF, van Grieken R, Melero JA. J. Catal. 2008; 254: 205
  • 42 Mobaraki A, Movassagh B, Karimi B. Appl. Catal., A 2014; 472: 123
  • 43 Karimi B, Mobaraki A, Mirzaei HM, Zareyee D, Vali H. ChemCatChem 2014; 6: 212
  • 44 Karimi B, Zareyee D. Org. Lett. 2008; 10: 3989
  • 45 Karimi B, Zareyee D. J. Mater. Chem. 2009; 19: 8665
  • 46 Zareyee D, Razaghi Ghadikolaee A, Khalilzadeh MA. Can. J. Chem. 2012; 90: 464
  • 47 Zareyee D, Moosavi SM, Alaminezhad A. J. Mol. Catal. A: Chem. 2013; 378: 227
  • 48 Zareyee D, Alizadeh H. RSC Adv. 2014; 4: 37941
  • 49 Zareyee D, Ghandali MS, Khalilzadeh MA. Catal. Lett. 2011; 141: 1521
  • 50 Zareyee D, Serehneh M. J. Mol. Catal. A: Chem. 2014; 391: 88
  • 51 Zareyee D, Mirzajanzadeh E, Khalilzadeh MA. J. Chem. Sci. (Berlin, Ger.) 2015; 127: 1229
  • 52 2-Substituted Benzimidazoles (Table 1, Entries 1–16); General Procedure In a round-bottomed flask, a mixture of benzene-1,2-diamine (1 mmol) and the appropriate aldehyde (1 mmol) in H2O (5 mL) was stirred at r.t. in the presence of SBA-15-Ph-PrSO3H (0.012 g, 2 mol%) or CMK-5-SO3H (0.046 g, 2 mol%) for the appropriate time (Table 1). When the reaction was complete (TLC; hexane–EtOAc, 4:1), hot EtOH was added, and the mixture was filtered and concentrated under vacuum to give a crude product that was purified by crystallization (EtOH). 2-Phenyl-1H-benzimidazole (Table 1, Entry 1) White solid; Yield: 174 mg (90%); mp 288–291 °C (Lit.53 288–290 °C). 1H NMR (400 MHz, DMSO-d 6): δ = 7.19–7.23 (dd, J = 9.4, 2.8 Hz, 2 H), 7.49 (t, J = 7.2 Hz, 1 H), 7.54–7.56 (m, 2 H), 7.57–7.60 (m, 2 H), 8.19 (dd, J = 8.4, 1.2 Hz, 2 H), 12.93 (s, 1 H). 13C NMR (100 MHz, DMSO-d 6): δ = 119.3, 122.3, 126.9, 127.1, 129.4, 130.3, 130.6, 151.6.
  • 53 Nagawade RR, Shinde DB. Chin. Chem. Lett. 2006; 17: 453