RSS-Feed abonnieren
DOI: 10.1055/s-0035-1561358
Synthesis of Benzo-Fused Cyclic Compounds via Intramolecular Cyclization of Aryltriazenes
Publikationsverlauf
Received: 20. Oktober 2015
Accepted after revision: 06. Januar 2016
Publikationsdatum:
11. Februar 2016 (online)
Abstract
The rapid and convenient construction of benzo-fused cyclic compounds has attracted significant attention due to their wide applications in various fields. As important building blocks and organic synthons, aryltriazene compounds can be applied in the synthesis of a variety of heterocycles and carbocycles. With promotion by Lewis or Brønsted acids, aryltriazenes are readily transformed into reactive aryl cations which can undergo intramolecular cyclization to form diverse benzo-fused cyclic compounds. This account covers recent developments in the synthesis of benzo-fused cyclic compounds via intramolecular cyclization of aryltriazenes.
1 Introduction
2 Synthesis of Heterocycles via Intramolecular C–N Bond Formation
2.1 Palladium-Catalyzed Regioselective Synthesis of N-Aryl Benzotriazoles
2.2 Brønsted Acid Catalyzed Stereoselective Synthesis of trans-3-Alkenyl Indazoles
2.3 Lewis Acid Promoted Synthesis of Unsymmetrical and Highly Functionalized Carbazoles
3 Synthesis of Heterocycles via Intramolecular C–O Bond Formation
3.1 Lewis Acid Promoted Synthesis of Dibenzofurans and Dihydrobenzofurans
3.2 Lewis Acid Promoted Synthesis of Dibenzopyranones and Coumarins
3.3 Lewis Acid Promoted Synthesis of 2-Hydroxyflavanones
4 Synthesis of Carbocycles via Intramolecular C–C Bond Formation
4.1 Lewis Acid Mediated Synthesis of Unsymmetrical and Functionalized Polycyclic Aromatic Hydrocarbons
4.2 Brønsted Acid Mediated Synthesis of Fluorene Derivatives
5 Conversion into Azides and then into Heterocyclic Compounds
6 Conclusion
-
References
- 1a Hickman JA. Biochimie 1978; 60: 997
- 1b Gescher A, Threadgill MD. Pharmacol. Ther. 1987; 32: 191
- 1c Marchesi F, Turriziani M, Tortorelli G, Avvisati G, Torino F, De Vecchis L. Pharmacol. Res. 2007; 56: 275
- 2a Kimball DB, Haley MM. Angew. Chem. Int. Ed. 2002; 41: 3338
- 2b Bräse S. Acc. Chem. Res. 2004; 37: 805
- 2c Gil C, Bräse S. J. Comb. Chem. 2009; 11: 175
- 3a Nicolaou KC, Boddy CN. C, Li H, Koumbis AE, Hughes R, Natarajan S, Jain NF, Ramanjulu JM, Bräse S, Solomon ME. Chem. Eur. J. 1999; 5: 2602
- 3b Nicolaou KC, Boddy CN. C. J. Am. Chem. Soc. 2002; 124: 10451
- 3c Liu C.-Y, Knochel P. Org. Lett. 2005; 7: 2543
- 3d Liu C.-Y, Knochel P. J. Org. Chem. 2007; 72: 7106
- 3e Saeki T, Son E.-C, Tamao K. Org. Lett. 2004; 6: 617
- 3f Bräse S, Schroen M. Angew. Chem. Int. Ed. 1999; 38: 1071
- 4a Moore JS. Acc. Chem. Res. 1997; 30: 402
- 4b Delgado JL, de la Cruz P, Lopez-Arza V, Langa F, Kimball DB, Haley MM, Araki Y, Ito O. J. Org. Chem. 2004; 69: 2661
- 4c Flatt AK, Chen B, Tour JM. J. Am. Chem. Soc. 2005; 127: 8918
- 5a Kimball DB, Hayes AG, Haley MM. Org. Lett. 2000; 2: 3825
- 5b Kimball DB, Herges R, Haley MM. J. Am. Chem. Soc. 2002; 124: 1572
- 5c Kimball DB, Weakley TJ. R, Haley MM. J. Org. Chem. 2002; 67: 6395
- 5d Kimball DB, Weakley TJ. R, Herges R, Haley MM. J. Am. Chem. Soc. 2002; 124: 13463
- 6a Döbele M, Vanderheiden S, Jung N, Bräse S. Angew. Chem. Int. Ed. 2010; 49: 5986
-
6b Hafner A, Bräse S. Angew. Chem. Int. Ed. 2012; 51: 3713
- 6c Voica A.-F, Mendoza A, Gutekunst WR, Fraga JO, Baran PS. Nat. Chem. 2012; 4: 629
- 6d Zhu C, Yamane M. Org. Lett. 2012; 14: 4560
- 6e Liu C, Lv J, Luo S, Cheng J.-P. Org. Lett. 2014; 16: 5458
- 6f Li W, Wu X.-F. Org. Lett. 2015; 17: 1910
- 6g Li W, Wu X.-F. Org. Biomol. Chem. 2015; 13: 5090
- 7a Wang C, Chen H, Wang Z, Chen J, Huang Y. Angew. Chem. Int. Ed. 2012; 51: 7242
- 7b Wang C, Sun H, Fang Y, Huang Y. Angew. Chem. Int. Ed. 2013; 52: 5795
- 7c Fang Y, Wang C, Su S, Yu H, Huang Y. Org. Biomol. Chem. 2014; 12: 1061
- 7d Sun H, Wang C, Yang Y.-F, Chen P, Wu Y.-D, Zhang X, Huang Y. J. Org. Chem. 2014; 79: 11863
- 7e Wang D, Cui S. Tetrahedron 2015; doi: 10.1016/j.tet.2015.06.024
- 8 Liu C, Miao T, Zhang L, Li P, Zhang Y, Wang L. Chem. Asian J. 2014; 9: 2584
- 9 Liu C.-Y, Gavryushin A, Knochel P. Chem. Asian J. 2007; 2: 1020
- 10a Mahouche-Ghergui S, Gam-Derouich S, Mangeney C, Chehimi MM. Chem. Soc. Rev. 2011; 40: 4143
- 10b Bonin H, Fouquet E, Felpin F.-X. Adv. Synth. Catal. 2011; 353: 3063
- 10c Hari DP, König B. Angew. Chem. Int. Ed. 2013; 52: 4734
- 11a Katritzky AR, Rees CW. Comprehensive Heterocyclic Chemistry. 1984
- 11b Katritzky AR, Scriven EF. V, Rees CW. Comprehensive Heterocyclic Chemistry II . Elsevier; Oxford: 1996
- 11c Katritzky AR, Ramsden CA, Scriven EF. V, Taylor RJ. K. Comprehensive Heterocyclic Chemistry III. 2008
- 11d Wright DL In Progress in Heterocyclic Chemistry . Vol. 17. Gribble GW, Joule JA. Elsevier; Oxford: 2005: 1
-
12a Nakamura I, Yamamoto Y. Chem. Rev. 2004; 104: 2127
- 12b Patil NT, Yamamoto Y. Chem. Rev. 2008; 108: 3395
- 12c Cacchi S, Fabrizi G, Goggiomani A. Heterocycles 2002; 56: 613
- 12d Evano G, Blanchard N, Toumi M. Chem. Rev. 2008; 108: 3054
- 12e Bauer EB. Curr. Org. Chem. 2008; 12: 1341
- 12f Arisawa M, Terada Y, Theeraladanon C, Takahashi K, Nakagawa M, Nishida A. J. Organomet. Chem. 2005; 690: 5398
- 12g Corma A, Leyva-Pérez A, Sabater MJ. Chem. Rev. 2011; 111: 1657
- 12h Thansandote P, Lautens M. Chem. Eur. J. 2009; 15: 5874
- 12i Beccalli EM, Broggini G, Fasana A, Rigamonti M. J. Organomet. Chem. 2011; 696: 277
- 13 Zhou J, He J, Wang B, Yang W, Ren H. J. Am. Chem. Soc. 2011; 133: 6868
- 14a Kale RR, Prasad V, Hussain HA, Tiwari VK. Tetrahedron Lett. 2010; 51: 5740
- 14b Liu Q, Wen D, Hang C, Li Q, Zhu Y. Helv. Chim. Acta 2010; 93: 1350
- 15 Takagi K, Al-Amin M, Hoshiya N, Wouters J, Sugimoto H, Shiro Y, Fukuda H, Shuto S, Arisawa M. J. Org. Chem. 2014; 79: 6366
- 16 Kumar RK, Ali MA, Punniyamurthy T. Org. Lett. 2011; 13: 2102
- 17a Halland N, Nazaré M, R’kyek O, Alonso J, Urmann M, Lindenschmidt A. Angew. Chem. Int. Ed. 2009; 48: 6879
- 17b Lefebvre V, Cailly T, Fabis F, Rault S. J. Org. Chem. 2010; 75: 2730
- 17c Hu J, Cheng Y, Yang Y, Rao Y. Chem. Commun. 2011; 47: 10133
- 17d Kumar MR, Park A, Park N, Lee S. Org. Lett. 2011; 13: 3542
- 17e Li X, He L, Chen H, Wu W, Jiang H. J. Org. Chem. 2013; 78: 3636
- 17f Zhang T, Bao W. J. Org. Chem. 2013; 78: 1317
- 17g Lian Y, Bergman RG, Lavis LD, Ellman JA. J. Am. Chem. Soc. 2013; 135: 7122
- 17h Yu D.-G, Suri M, Glorius F. J. Am. Chem. Soc. 2013; 135: 8802
- 17i Evano G, Blanchard N, Toumi M. Chem. Rev. 2008; 108: 3054
- 17j Katritzky AR, Rachwal S. Chem. Rev. 2011; 111: 7063
- 17k Haag B, Peng Z, Knochel P. Org. Lett. 2009; 11: 4270
- 18a Sampson PB, Liu Y, Li S.-W, Forrest BT, Pauls HW, Edwards LG, Feher M, Patel NK. B, Laufer R, Pan G. WO2011/123946, 2011
- 18b Yamaguchi T, Ushirogochi H, Takahashi T, Takebe T. WO2009/041559, 2009
- 18c Pauls HW, Forrest BT, Laufer R, Feher M, Sampson PB, Pan G. WO2009/079767, 2009
- 18d Chekal BP, Guinness SM, Lillie BM, McLaughlin RW, Palmer CW, Post RJ, Sieser JE, Singer RA, Sluggett GW, Vaidyanathan R, Withbroe GJ. Org. Process Res. Dev. 2014; 18: 266
- 19 Yang Y, Yang Z, Xu L, Zhang L, Xu X, Miao M, Ren H. Angew. Chem. Int. Ed. 2013; 52: 14135
- 20 Yang W, Zhou J, Wang B, Ren H. Chem. Eur. J. 2011; 17: 13665
- 21 Zhao G, Wang B, Yang W, Ren H. Eur. J. Org. Chem. 2012; 6236
- 22a Saeki T, Son E.-C, Tamao K. Org. Lett. 2004; 6: 617
- 22b Patrick TB, Willaredt RP, Degonia DJ. J. Org. Chem. 1985; 50: 2232
- 22c Saeki T, Matsunaga T, Son E.-C, Tamao K. Adv. Synth. Catal. 2004; 346: 1689
- 23 Shang X, Xu L, Yang W, Zhou J, Miao M, Ren H. Eur. J. Org. Chem. 2013; 5475
- 24 Bernini R, Mincione E, Sanetti A, Bovicelli P, Lupattelli P. Tetrahedron Lett. 1997; 38: 4651
- 25 Chen Z, Yang W, Xu L, Zhang L, Miao M, Ren H. Eur. J. Org. Chem. 2013; 7411
- 26 Yoshida K, Mori M, Kondo T. Nat. Prod. Rep. 2009; 26: 884
- 27a Wu T.-C, Hsin H.-J, Kuo M.-Y, Li C.-H, Wu Y.-T. J. Am. Chem. Soc. 2011; 133: 16319
- 27b Xie C, Zhang Y, Huang Z, Xu P. J. Org. Chem. 2007; 72: 5431
- 27c Nagao I, Shimizu M, Hiyama T. Angew. Chem. Int. Ed. 2009; 48: 7573
- 27d Mochida K, Kawasumi K, Segawa Y, Itami K. J. Am. Chem. Soc. 2011; 133: 10716
- 27e Matsumoto A, Ilies L, Nakamura E. J. Am. Chem. Soc. 2011; 133: 6557
- 27f Zhai L, Shukla R, Wadumethrige SH, Rathore R. J. Org. Chem. 2010; 75: 4748
- 27g Laschat S, Baro A, Steinke N, Giesselmann F, Hägele C, Scalia G, Judele R, Kapatsina E, Sauer S, Schreivogel A, Tosoni M. Angew. Chem. Int. Ed. 2007; 46: 4832
- 28 Zhou J, Yang W, Wang B, Ren H. Angew. Chem. Int. Ed. 2012; 51: 12293
- 29 Xu L, Yang W, Zhang L, Miao M, Yang Z, Xu X, Ren H. J. Org. Chem. 2014; 79: 9206
- 30a Fuchibe K, Akiyama T. J. Am. Chem. Soc. 2006; 128: 1434
- 30b Chernyak N, Gevorgyan V. J. Am. Chem. Soc. 2008; 130: 5636
- 30c Dai W, Petersen JL, Wang KK. Org. Lett. 2004; 6: 4355
- 30d Guo L.-N, Duan X.-H, Liu X.-Y, Hu J, Bi H.-P, Liang Y.-M. Org. Lett. 2007; 9: 5425
- 30e Tian Q, Larock RC. Org. Lett. 2000; 2: 3329
- 30f Yang J.-S, Lee Y.-R, Yan J.-L, Lu M.-C. Org. Lett. 2006; 8: 5813
- 30g Tobisu M, Kita Y, Ano Y, Chatani N. J. Am. Chem. Soc. 2008; 130: 15982
- 31 Yang W, Xu L, Chen Z, Zhang L, Miao M, Ren H. Org. Lett. 2013; 15: 1282
- 32 Xu L, Liu Z, Dong W, Song J, Miao M, Xu J, Ren H. Org. Biomol. Chem. 2015; 13: 6333