RSS-Feed abonnieren
Bitte kopieren Sie die angezeigte URL und fügen sie dann in Ihren RSS-Reader ein.
https://www.thieme-connect.de/rss/thieme/de/10.1055-s-00000083.xml
Synlett 2016; 27(10): 1582-1586
DOI: 10.1055/s-0035-1561578
DOI: 10.1055/s-0035-1561578
letter
Regioselective C–H Borylation of Heteroaromatic Aldimines with Iridium Complexes
Weitere Informationen
Publikationsverlauf
Received: 19. Dezember 2015
Accepted after revision: 11. Februar 2016
Publikationsdatum:
15. März 2016 (online)

Abstract
An iridium-catalyzed regioselective C–H borylation of pentafluoroaniline-derived heteroaromatic aldimines has been developed. Various heteroaromatic aldimines underwent borylation by bis(pinacolato)diboron to afford the corresponding borylated products in good yields in the presence of an iridium complex formed in situ from bis(cyclooctadienyl)(methoxy)iridium {[Ir(OMe)(cod)]2} and 1,10-phenanthroline.
Supporting Information
- Supporting information for this article is available online at http://dx.doi.org/10.1055/s-0035-1561578.
- Supporting Information
-
References
- 1a Miyaura N, Yamamoto Y In Comprehensive Organometallic Chemistry III. Vol. 9. Crabtree RH, Mingos DM. P. Elsevier; Oxford: 2007: 145
- 1b Suzuki A In Boronic Acids: Preparation and Applications in Organic Synthesis, Medicine and Materials. Hall DG. Wiley-VCH; Weinheim: 2005. Chap. 3, 123
- 2a Zhou S, Jia Y. Org. Lett. 2014; 16: 3416
- 2b Han S, Morrison KC, Hergenrother PJ, Movassaghi M. J. Org. Chem. 2013; 79: 473
- 2c McMurray L, O’Hara F, Gaunt MJ. Chem. Soc. Rev. 2011; 40: 1885
- 2d Han S, Movassaghi M. J. Am. Chem. Soc. 2011; 133: 10768
- 2e Gutekunst WR, Baran PS. Chem. Soc. Rev. 2011; 40: 1976
- 2f Beck EM, Hatley R, Gaunt MJ. Angew. Chem. Int. Ed. 2008; 47: 3004
- 3a Dombray T, Werncke CG, Jiang S, Grellier M, Vendier L, Bontemps SB, Sortais J.-B, Sabo-Etienne S, Darcel C. J. Am. Chem. Soc. 2015; 137: 4062
- 3b Maegawa Y, Inagaki S. Dalton Trans. 2015; 44: 13007
- 3c Furukawa T, Tobisu M, Chatani N. Chem. Commun. 2015; 51: 6508
- 3d Larsen MA, Hartwig JF. J. Am. Chem. Soc. 2014; 136: 4287
- 3e Green AG, Liu P, Merlic CA, Houk K. J. Am. Chem. Soc. 2014; 136: 4575
- 3f Sadler SA, Tajuddin H, Mkhalid IA, Batsanov AS, Albesa-Jove D, Cheung MS, Maxwell AC, Shukla L, Roberts B, Blakemore DC, Lin Z, Marder TB, Steel PG. Org. Biomol. Chem. 2014; 12: 7318
- 3g Konishi S, Kawamorita S, Iwai T, Steel PG, Marder TB, Sawamura M. Chem. Asian J. 2014; 9: 434
- 3h Preshlock SM, Plattner DL, Maligres PE, Krska SW, Maleczka RE. Jr, Smith MR. III. Angew. Chem. Int. Ed. 2013; 52: 12915
- 3i Tajuddin H, Harrisson P, Bitterlich B, Collings JC, Sim N, Batsanov AS, Cheung MS, Kawamorita S, Maxwell AC, Shukla L, Morris J, Lin Z, Mader TB, Steel PG. Chem. Sci. 2012; 3: 3505
- 3j Mkhalid IA, Barnard JH, Marder TB, Murphy JM, Hartwig JF. Chem. Rev. 2009; 110: 890
- 3k Kallepalli VA, Shi F, Paul S, Onyeozili EN, Maleczka RE. Jr, Smith MR. III. J. Org. Chem. 2009; 74: 9199
- 3l Mkhalid IA. I, Coventry DN, Albesa-Jove D, Batsanov AS, Howard JA. K, Perutz RN, Marder TB. Angew. Chem. Int. Ed. 2006; 45: 489
- 4 Ishiyama T, Takagi J, Yonekawa Y, Hartwig JF, Miyaura N. Adv. Synth. Catal. 2003; 345: 1103
- 5a Hartwig JF. Chem. Soc. Rev. 2011; 40: 1992
- 5b Murphy JM, Liao X, Hartwig JF. J. Am. Chem. Soc. 2007; 129: 15434
- 5c Tzschucke CC, Murphy JM, Hartwig JF. Org. Lett. 2007; 9: 761
- 5d Paul S, Chotana GA, Holmes D, Reichle RC, Maleczka RE. Jr, Smith MR. III. J. Am. Chem. Soc. 2006; 128: 15552
- 5e Ishiyama T, Miyaura N. Pure Appl. Chem. 2006; 78: 1369
- 5f Ishiyama T, Nobuta Y, Hartwig JF, Miyaura N. Chem. Commun. 2003; 2924
- 5g Ishiyama T, Miyaura N. J. Organomet. Chem. 2003; 680: 3
- 5h Takagi J, Sato K, Hartwig JF, Ishiyama T, Miyaura N. Tetrahedron Lett. 2002; 43: 5649
- 6 Chotana GA, Rak MA, Smith MR. III. J. Am. Chem. Soc. 2005; 127: 10539
- 7 Sasaki I, Taguchi J, Hiraki S, Ito H, Ishiyama T. Chem. Eur. J. 2015; 21: 9236
- 8a Itoh H, Kikuchi T, Ishiyama T, Miyaura N. Chem. Lett. 2011; 40: 1007
- 8b Ishiyama T, Isou H, Kikuchi T, Miyaura N. Chem. Commun. 2010; 46: 159
- 9 For an example of carbonyl-directed borylation of heteroaromatic compounds with a silica-supported iridium catalyst, see: Kawamorita S, Ohmiya H, Sawamura M. J. Org. Chem. 2010; 75: 3855
- 10a Ros A, Fernández R, Lassaletta JM. Chem. Soc. Rev. 2014; 43: 3229
- 10b Xiao B, Li Y.-M, Liu Z.-J, Yang H.-Y, Fu Y. Chem. Commun. 2012; 48: 4854
- 10c Dai H.-X, Yu J.-Q. J. Am. Chem. Soc. 2012; 134: 134
- 10d Hurst TE, Macklin TK, Becker M, Hartmann E, Kügel W, Salle PL, Batsanov AS, Marder TB, Snieckus V. Chem. Eur. J. 2010; 16: 8155
- 10e Yamazaki K, Kawamorita S, Ohmiya H, Sawamura M. Org. Lett. 2010; 12: 3978
- 10f Kawamorita S, Ohmiya H, Hara K, Fukuoka A, Sawamura M. J. Am. Chem. Soc. 2009; 131: 5058
- 11a Clemens L, Quaranta L, Edmunds A, Pouliot M, Trah S. WO 2012069601, 2012
- 11b Shoujun C, Junyi Z, Jun J, Gary B, Nha V, Qinglin C, Zhiqiang X, Lijun S. WO 2010039237, 2010
- 11c Yu X, Park E.-J, Kondratyuk TP, Pezzuto JM, Sun D. Org. Biomol. Chem. 2012; 10: 8835
- 12 Sasaki I, Amou T, Ito H, Ishiyama T. Org. Biomol. Chem. 2014; 12: 2041
- 13 Borylation of Heteroaromatic Aldimine 1a; General Procedure An oven-dried two-necked flask was charged with [Ir(OMe)(cod)]2 (5.0 mg, 7.5 μmol), borane 2 (152.4 mg, 0.60 mmol), and 1,10-phen (2.7 mg, 15 μmol). The flask was connected to a vacuum/N2 manifold through a rubber tube, evacuated, and backfilled with N2. This cycle was repeated three times. Mesitylene (3.0 mL) was then added in the flask through a rubber septum by using a syringe and the mixture was stirred at r.t. for 15 min. Next, 1 (0.50 mmol) was added from a syringe and the mixture was stirred at r.t. When the reaction was complete, the mixture was initially purified by Kugelrohr distillation. The resulting mixture was crystallized from hexane. See the Supporting Information for characterization data of all compounds 3. Data for 3a are given here as an example. The NMR yield of 3a in the crude mixture was 79%. The reaction mixture was first purified by Kugelrohr distillation (34 Pa, 180 °C). Then, the resulting mixture was recrystallized from hexane to obtain 3a (76.2 mg, 0.19 mmol, 38%) as a white solid from 1a (137.6 mg, 0.50 mmol); mp 149 °C. 1H NMR (396 MHz, CDCl3): δ = 1.32 (s, 12 H), 2.45 (d, J = 1.2 Hz, 3 H), 6.40 (s, 1 H), 8.69 (s, 1 H). 13C NMR (99 MHz, CDCl3): δ = 13.7 (CH3), 24.7 (CH3), 84.2 (C), 113.5 (CH), 127.0 (dt, J = 4.2, 12.4 Hz, C), 136.4–136.8 (m, CF), 139.0–139.3 (m, CF), 141.5–141.6 (m, CF), 155.7 (C), 156.2 (CH), 158.1 (C). The carbon directly attached to the boron atom was not detected, likely due to quadrupolar relaxation. 19F NMR (373 MHz, CDCl3): δ = –153.6 (d, J = 14.2 Hz, 2 F), –161.5 (t, J = 21.6 Hz, 1 F), –163.9 (t, J = 17.9 Hz, 2 F). HRMS-EI (m/z): [M]+ calcd for C18H17 10BF5NO3, 400.12580; found, 400.12638.
For applications of borylated heteroarenes in syntheses of natural products, see:
For C–H borylation of heteroarenes with transition-metal catalysts, see:
For regioselective C–H borylations of arenes at the meta position by using bidentate ligands, see:
Our group has reported ortho borylations of functionalized arenes, see:
For examples of ortho borylations of functionalized arenes reported by other groups, see:
For bioactive heteroaromatic compounds bearing a formyl or imino group, see: