Synthesis 2016; 48(16): 2553-2571
DOI: 10.1055/s-0035-1561650
short review
© Georg Thieme Verlag Stuttgart · New York

A Decade of Advance in the Asymmetric Vinylogous Mannich Reaction

María Sánchez Roselló*
a   Departamento de Química Orgánica, Universidad de Valencia, 46100 Burjassot, Spain
b   Laboratorio de Moléculas Orgánicas, Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain   Email: maria.sanchez-rosello@uv.es   Email: santos.fustero@uv.es
,
Carlos del Pozo
a   Departamento de Química Orgánica, Universidad de Valencia, 46100 Burjassot, Spain
,
Santos Fustero*
a   Departamento de Química Orgánica, Universidad de Valencia, 46100 Burjassot, Spain
b   Laboratorio de Moléculas Orgánicas, Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain   Email: maria.sanchez-rosello@uv.es   Email: santos.fustero@uv.es
› Author Affiliations
Further Information

Publication History

Received: 19 April 2016

Accepted: 25 April 2016

Publication Date:
21 June 2016 (online)


Abstract

When the principle of vinylogy is applied to imines as electrophiles, the so-called vinylogous Mannich reaction (VMR), γ-aminocarbonyl (such as butenolides) and β-aminocarbonyl compounds are generated in a very efficient manner. The asymmetric version of this vinylogous Mannich reaction gives access to highly functionalized chiral synthons, which are suitable for further transformations. The versatility of this methodology is exemplified with the synthesis of several alkaloids and natural products.

1 Introduction

2 Asymmetric Vinylogous Mannich Reactions (VMR) with 2-Silyl­oxyfurans and 2-Silyloxypyrroles

3 Asymmetric VMR with Acyclic Silyl Dienolates and Silyl Dienol Ketene Acetals

4 Asymmetric VMR with γ-Butenolides and γ-Butyrolactams

5 Asymmetric VMR with α,α-Dicyanoolefins

6 Miscellaneous Donors in Asymmetric VMR

7 Application of the VMR to Natural Product Synthesis

8 Conclusions

 
  • References


    • For selected reviews on the asymmetric Mannich reaction, see:
    • 1a Córdova A. Acc. Chem. Res. 2004; 37: 102
    • 1b Verkade JM. M, van Hemert LJ. C, Quaedflieg PJ. L. M, Rutjes FP. J. T. Chem. Soc. Rev. 2008; 37: 29
    • 2a For the first review covering the vinylogous principle, see: Fuson RC. Chem. Rev. 1935; 16: 1
    • 2b For a review on the vinylogous aldol and related reactions, see: Casiraghi G, Battistini L, Curti C, Rassu C, Zanardi F. Chem. Rev. 2011; 111: 3076 ; and references cited therein
    • 3a Schneider C, Sickert M. Catalytic, Enantioselective, Vinylogous Mannich Reactions. In Chiral Amine Synthesis. Nugent TC. Wiley-VCH; Weinheim: 2010
    • 3b Burns NZ, Jacobsen EN. Mannich Reaction . In Stereoselective Synthesis 2 (Science of Synthesis) . Molander GA. Thieme; Stuttgart: 2011

      For reviews on vinylogous Mannich-type reactions including synthetic applications, see:
    • 4a Bur SK, Martin SF. Tetrahedron 2001; 57: 3221
    • 4b Martin SF. Acc. Chem. Res. 2002; 35: 895

      For reviews on the vinylogous aldol reaction, see:
    • 5a Casiraghi G, Zanardi F, Appendino G, Rassu C. Chem. Rev. 2000; 100: 1929
    • 5b Denmark SE, Heemstra JR. Jr, Beutner GL. Angew. Chem. Int. Ed. 2005; 44: 4682
  • 6 Karimi B, Enders D, Jafari E. Synthesis 2013; 45: 2769
  • 7 Mukaiyama T. Angew. Chem., Int. Ed. Engl. 1977; 16: 817
  • 8 Casiraghi G, Zanardi F, Battistini L, Rassu G. Synlett 2009; 1525
  • 9 Martin SF, López OD. Tetrahedron Lett. 1999; 40: 8949
  • 10 Carswell EL, Snapper ML, Hoveyda AH. Angew. Chem. Int. Ed. 2006; 45: 7230
  • 11 Mandai H, Mandai K, Snapper ML, Hoveyda AH. J. Am. Chem. Soc. 2008; 130: 17961
  • 12 Wieland LC. W, Vieira EM, Snapper ML, Hoveyda AH. J. Am. Chem. Soc. 2009; 131: 570
  • 13 Silverio DL, Fu P, Carswell EL, Snapper ML, Hoveyda AH. Tetrahedron Lett. 2015; 56: 3489
  • 14 González AS, Arrayás RG, Rivero MR, Carretero JC. Org. Lett. 2008; 10: 4335
  • 15 Yuan Z.-L, Jiang JJ, Shi M. Tetrahedron 2009; 65: 6001
  • 16 Deng H.-P, Wei Y, Shi M. Adv. Synth. Catal. 2009; 351: 2897
  • 17 Zhao Q.-Y, Yuan Z.-L, Shi M. Tetrahedron: Asymmetry 2010; 21: 943
  • 18 The first example of a VMR of trifluoromethyl aldimines with trimethylsilyloxyfuran was reported in 2004, see: Spanedda MV, Ourévitch M, Crousse B, Bégué JP, Bonnet-Delpon D. Tetrahedron Lett. 2004; 45: 5023
  • 19 Zhao Q.-Y, Yuan Z.-L, Shi M. Adv. Synth. Catal. 2011; 353: 637
  • 20 Zhao Q.-Y, Shi M. Tetrahedron 2011; 67: 3724
  • 21 Curti C, Battistini L, Ranieri B, Pelosi G, Rassu G, Casiraghi C, Zanardi F. J. Org. Chem. 2011; 76: 2248
  • 22 Ranieri B, Curti C, Battistini L, Sartori A, Pinna L, Casiraghi C, Zanardi F. J. Org. Chem. 2011; 76: 10291
  • 23 Hayashi M, Sano M, Funahashi Y, Nakamura S. Adv. Synth. Catal. 2011; 353: 637
  • 24 Zheng L.-S, Li L, Yang KF, Zheng Z.-J, Xiao X.-Q, Xu L.-W. Tetrahedron 2013; 69: 8777
  • 25 Akiyama T, Honma Y, Itoh J, Fuchibe K. Angew. Chem. Int. Ed. 2013; 52: 5557
  • 26 Yu J, Miao Z, Chen R. Org. Biomol. Chem. 2011; 9: 1756
  • 27 Ruan S.-T, Luo J.-M, Du Y, Huang P.-G. Org. Lett. 2011; 13: 4938
  • 28 Ye J.-L, Zhang Y.-F, Liu Y, Zhang J.-Y, Ruan Y.-P, Huang P.-Q. Org. Chem. Front. 2015; 2: 697
  • 29 Liu L.-J, Liu J.-T. Tetrahedron 2014; 70: 1236
  • 30 Rao VU. B, Jadhav AP, Garad D, Singh RP. Org. Lett. 2014; 16: 648
  • 31 Tamura O, Takeda K, Mita N, Sakamoto M, Okamoto I, Morita N, Ishibashi H. Org. Biomol. Chem. 2011; 9: 7411
  • 32 Sickert M, Schneider C. Angew. Chem. Int. Ed. 2008; 47: 3631
  • 33 Sickert M, Abels F, Lang M, Sieler J, Birkemeyer C, Schneider C. Chem. Eur. J. 2010; 16: 2806
  • 34 Abels F, Schneider C. Synthesis 2011; 4050
  • 35 Giera DS, Sickert M, Schneider C. Org. Lett. 2008; 10: 4259
  • 36 Zhang Q, Hui Y, Zhou X, Lin L, Liu X, Feng X. Adv. Synth. Catal. 2010; 352: 976
  • 37 Wang Q, van Gemmeren M, List B. Angew. Chem. Int. Ed. 2014; 53: 13592
  • 38 Wang Q, List B. Synlett 2015; 26: 807
  • 39 Gu CL, Liu L, Wang D, Chen Y.-J. J. Org. Chem. 2009; 74: 5754
  • 40 Yang Y, Phillips DP, Pan S. Tetrahedron Lett. 2011; 52: 1549
  • 41 For a recent review regarding dinuclear Schiff base complexes in cooperative bimetallic asymmetric catalysis, see: Matsunaga S, Shibasaki M. Chem. Commun. 2014; 50: 1044
  • 42 Yamaguchi A, Matsunaga S, Shibasaki M. Org. Lett. 2008; 10: 2319
  • 43 Shepherd NE, Tanabe H, Xu Y, Matsunaga S, Shibasaki M. J. Am. Chem. Soc. 2010; 132: 3666
  • 44 Zhou L, Lin L, Ji J, Xie M, Liu X, Feng X. Org. Lett. 2011; 13: 3056
  • 45 Guo Y.-L, Bai J.-F, Peng L, Wang L.-L, Jia L.-N, Luo X.-Y, Tian F, Xu X.-Y, Wang L.-X. J. Org. Chem. 2012; 77: 8338
  • 46 Yin L, Takada H, Kumagai N, Shibasaki M. Angew. Chem. Int. Ed. 2013; 52: 7310
  • 47 Guo Y, Zhang Y, Qi L, Tian F, Wang L. RSC Adv. 2014; 4: 27286
  • 48 Nakamura S, Yamaji R, Hayashi M. Chem. Eur. J. 2015; 21: 9615
  • 49 Poulsen TB, Alemparte C, Jørgensen KA. J. Am. Chem. Soc. 2005; 127: 11614
  • 50 Xue D, Chen Y.-C, Wang Q.-W, Cun L.-F, Zhu J, Deng J.-G. Org. Lett. 2005; 7: 5293
  • 51 For a recent review of α,α-dicyanoalkenes as vinylogous nucleophiles, see: Cui H.-L, Chen Y.-C. Chem. Commun. 2009; 4479
  • 52 Niess B, Jørgensen KA. Chem. Commun. 2007; 1620
  • 53 Liu T.-Y, Cui H.-L, Long J, Li B.-J, Wu Y, Ding L.-S, Chen Y.-C. J. Am. Chem. Soc. 2007; 129: 1878
  • 54 Chen Q.-A, Zeng W, Wang D.-W, Zhou Y.-G. Synlett 2009; 2236
  • 55 Xiong X.-F, Ja Z.-J, Du W, Jiang K, Liu T.-Y, Chen Y.-C. Chem. Commun. 2009; 6994
  • 56 Shi F, Xing G.-J, Tao Z.-L, Luo S.-W, Tu S.-J, Gong L.-Z. J. Org. Chem. 2012; 67: 6970
  • 57 Liu Y, Yang Y, Huang Y, Xu X.-H, Qing F.-L. Synlett 2015; 26: 67
  • 58 Corrêa IR. Jr, Nören-Müller A, Ambrosi H.-D, Jakupovic S, Saxena K, Schwalbe H, Kaiser M, Waldmann H. Chem. Asian J. 2007; 2: 1109
  • 59 Liautard V, Desvergnes V, Itoh K, Liu H.-W, Martin OR. J. Org. Chem. 2008; 73: 3103
    • 60a Alibés R, Bayón P, de March P, Figueredo M, Font J, García-García E, González-Galvez D. Org. Lett. 2005; 7: 5107
    • 60b González-Galvez D, García-García E, Alibés R, Bayón P, de March P, Figueredo M, Bosch J. J. Org. Chem. 2009; 74: 6199
  • 61 Bardají GG, Cantó M, Alibés R, Bayón P, Busqué F, de March P, Figueredo M, Bosch J. J. Org. Chem. 2008; 73: 7657
  • 62 Giera DS, Sickert M, Schneider C. Synthesis 2009; 3797
    • 63a Abels F, Lindemann C, Koch E, Schneider C. Org. Lett. 2012; 14: 5972
    • 63b Abels F, Lindemann C, Schneider C. Chem. Eur. J. 2014; 20: 1964
  • 64 Tuo S.-C, Ye J.-L, Wang A.-E, Huang S.-Y, Huang P.-Q. Org. Lett. 2011; 13: 5270
  • 65 Miyatake-Ondozabal H, Bannwart LM, Gademann K. Chem. Commun. 2013; 49: 1921
  • 66 Guo L.-D, Liang P, Zheng J.-F, Huang P.-Q. Eur. J. Org. Chem. 2013; 2230
    • 67a Sartori A, Dell’Amico L, Curti C, Battistini L, Pelosi G, Rassu G, Casiraghi G, Zanardi F. Adv. Synth. Catal. 2011; 353: 3278
    • 67b Sartori A, Dell’Amico L, Battistini L, Curti C, Rivara S, Pala D, Kerry PS, Pelosi G, Casiraghi G, Rassu G, Zanardi G. Org. Biomol. Chem. 2014; 12: 1561
  • 68 Bian Z, Marvin CC, Pettersson M, Martin SF. J. Am. Chem. Soc. 2014; 136: 14184
  • 69 Yang Y. RSC Adv. 2015; 5: 18894
  • 70 Kamath A, Fabritius C.-H, Philouze C, Delair P. Org. Biomol. Chem. 2015; 13: 9384