RSS-Feed abonnieren
Bitte kopieren Sie die angezeigte URL und fügen sie dann in Ihren RSS-Reader ein.
https://www.thieme-connect.de/rss/thieme/de/10.1055-s-00000083.xml
Synlett 2016; 27(13): 1931-1935
DOI: 10.1055/s-0035-1561652
DOI: 10.1055/s-0035-1561652
letter
Thulium Triflate Catalyzed Hydration of 2-Substituted 4-Alkynones
Weitere Informationen
Publikationsverlauf
Received: 18. März 2016
Accepted after revision: 08. Mai 2016
Publikationsdatum:
01. Juni 2016 (online)
Abstract
We report on a facile synthetic route for the preparation of substituted 1,4-diketones by thulium triflate mediated hydration of substituted 4-alkynones in MeNO2 at 25 °C for five hours. The products were obtained in moderate to high yields.
Supporting Information
- Supporting information (experimental procedures and scanned photocopies of NMR (CDCl3) spectral data) for this article is available online at http://dx.doi.org/10.1055/s-0035-1561652.
- Supporting Information
-
References and Notes
- 1a Hintermann L, Labonne A. Synthesis 2007; 1121
- 1b Alonso F, Beleskaya IP, Yus M. Chem. Rev. 2004; 104: 3079
- 1c Corma A, Leyva-Perez A, Sabater MJ. Chem. Rev. 2011; 111: 1657
- 2a Larock RC, Leong WW In Comprehensive Organic Synthesis . Trost BM, Fleming I, Semmelhack MF. Pergamon Press; Oxford: 1991. Vol. 4 269
- 2b March J. Advanced Organic Chemistry . Wiley; New York: 1992. 4th ed 76
- 3a Imagawa H, Kurisaki T, Nishizawa M. Org. Lett. 2004; 6: 3679
- 3b Nishizawa M, Skwarczynski M, Imagawa H, Suhihara T. Chem. Lett. 2002; 12
- 3c Nishizawa M, Imagawa H, Yamamoto H. Org. Biomol. Chem. 2010; 8: 511
- 4a Roembke P, Schmidbaur H, Cronje S, Raubenheimer H. J. Mol. Catal. A: Chem. 2004; 212: 35
- 4b Vasudevan A, Verzal MK. Synlett 2004; 631
- 4c Marion N, Ramon RS, Nolan SP. J. Am. Chem. Soc. 2009; 131: 448
- 4d Hashmi AS. K, Hengst T, Lothschutz C, Rominger F. Adv. Synth. Catal. 2010; 352: 1315
- 5a Das R, Chakraboty D. Appl. Organomet. Chem. 2012; 26: 722
- 5b Kataoka Y, Matsumoto O, Tani K. Chem. Lett. 1996; 727
- 6a Arcadi A, Alfonsi M, Chiarini M, Marinelli F. J. Organomet. Chem. 2009; 694: 576
- 6b Belting V, Krause N. Org. Biomol. Chem. 2009; 7: 1221
- 6c Wang T, Zhang J. Dalton Trans. 2010; 39: 4270
- 7a Chevallier F, Breit B. Angew. Chem. Int. Ed. 2006; 45: 1599
- 7b Labonne A, Kribber T, Hintermann L. Org. Lett. 2006; 8: 5853
- 7c Tokunaga M, Suzuki T, Koga N, Fukushima T, Horiuchi A, Wakatsuki Y. J. Am. Chem. Soc. 2001; 123: 11917
- 8 For Rh3+, see: Blum J, Huminer H, Alper H. J. Mol. Catal. 1992; 75: 153
- 9a Hartman J, Hiscox WC, Jennings PW. J. Org. Chem. 1993; 58: 7613
- 9b Baidossi W, Lahav M, Blum J. J. Org. Chem. 1997; 62: 669
- 9c Lucey DW, Atwoood JD. Organometallics 2002; 21: 2481
- 10 For Os2+, see: Harman WD, Dobson JC, Taube H. J. Am. Chem. Soc. 1989; 111: 3061
- 11a Kanemitsu H, Uehara K, Fukuzumi S, Ogo S. J. Am. Chem. Soc. 2008; 130: 17141
- 11b Ogo S, Uehara K, Abura T, Watanabe Y, Fukuzumi S. J. Am. Chem. Soc. 2004; 126: 16520
- 11c Hirabayashi T, Okimoto Y, Saito A, Morita M, Sakaguchi S, Ishii Y. Tetrahedron 2006; 62: 2231
- 12a Kamijo S, Yamamoto Y. J. Org. Chem. 2003; 68: 4764
- 12b Arcadi A, Cacchi S, Fabrizi G, Marinelli F, Parisi LM. Tetrahedron 2003; 59: 4661
- 12c Li Y, Yu Z. J. Org. Chem. 2009; 74: 8904
- 12d Saito A, Enomoto Y, Hanzawa Y. Tetrahedron Lett. 2011; 52: 4299
- 13a Damiano JP, Pastel M. J. Organomet. Chem. 1996; 522: 303
- 13b Wu X.-F, Bezier D, Darcel C. Adv. Synth. Catal. 2009; 351: 367
- 13c Cabrero-Antonio JR, Leyva-Pérez A, Corma A. Chem. Eur. J. 2012; 18: 11107
- 13d Park J, Yeon J, Lee PH, Lee K. Tetrahedron Lett. 2013; 54: 4414
- 14a Jha M, Shelke GM, Pericherla K, Kumar A. Tetrahedron Lett. 2014; 55: 4815
- 14b Hassam M, Li W.-S. Tetrahedron 2015; 71: 2719
- 15a Feng X, Tan Z, Chen D, Shen Y, Guo C.-C, Xiang J, Zhu C. Tetrahedron Lett. 2008; 49: 4110
- 15b Tsuji H, Yamagata K.-i, Ueda Y, Nakamura E. Synlett 2010; 1015
- 15c Chang M.-Y, Lu Y.-J, Cheng Y.-J. Tetrahedron 2015; 71: 6840
- 16 For Zn2+, see: Al-huniti MH, Lepore SD. Org. Lett. 2014; 16: 4154
- 17a Ladziata U. ARKIVOC 2014; (i): 307
- 17b Kobayashi S, Sugiura M, Kitagawa H, Lam WW.-L. Chem. Rev. 2002; 102: 2227
- 18a Chang M.-Y, Chen Y.-C, Chan C.-K, Huang GG. Tetrahedron 2015; 71: 2095
- 18b Chang M.-Y, Chen Y.-H, Cheng Y.-C. Tetrahedron 2016; 72: 518
- 18c Chang M.-Y, Cheng Y.-C, Lu Y.-J. Org. Lett. 2015; 17: 1264
- 18d Chang M.-Y, Cheng Y.-C, Lu Y.-J. Org. Lett. 2015; 17: 3142
- 18e Chang M.-Y, Cheng Y.-C. Org. Lett. 2015; 17: 5702
- 18f Chang M.-Y, Lu Y.-J, Cheng Y.-C. Tetrahedron 2015; 71: 6840
- 19a Chang M.-Y, Chen Y.-C, Chan C.-K. Synlett 2014; 25: 1739
- 19b Chang M.-Y, Chen Y.-C, Chan C.-K. Tetrahedron 2014; 70: 8908
- 19c Chang M.-Y, Cheng Y.-C. Synlett 2016; 27: 854
- 19d Chang M.-Y, Lu Y.-J, Cheng Y.-C. Tetrahedron 2015; 71: 1192
- 19e Chang M.-Y, Cheng Y.-C, Lu Y.-J. Org. Lett. 2014; 16: 6252
- 19f Chan C.-K, Lu Y.-J, Chang M.-Y. Tetrahedron 2015; 71: 9544
- 19g Chang M.-Y, Cheng Y.-C. Org. Lett. 2016; 18: 608
- 19h Chang M.-Y, Cheng Y.-C. Org. Lett. 2016; 18: 1682
- 19i Chang M.-Y, Huang Y.-H, Wang H.-S. Tetrahedron 2016; 72: 1888
- 19j Chang M.-Y, Chen Y.-C, Chan C.-K. Tetrahedron 2015; 71: 782
- 19k Chan C.-K, Chen Y.-C, Chen Y.-L, Chang M.-Y. Tetrahedron 2015; 71: 9187
- 20a Bhardwaj V, Gumber D, Abbot V, Dhiman S, Sharma P. RSC Adv. 2015; 5: 15233
- 20b Khaghaninejad S, Heravi MM. Adv. Heterocycl. Chem. 2014; 111: 95
- 20c Donohoe TJ, Pullin RD. C. Chem. Commun. 2012; 48: 11924
- 20d Schmuck C, Rupprecht D. Synthesis 2007; 3095
- 21a Eymur S, Gollu M, Tanyeli C. Turkish J. Chem. 2013; 37: 586
- 21b Yetra SR, Patra A, Biju AT. Synthesis 2015; 47: 1357
- 21c Flanigan DM, Romanov-Michailidis F, White NA, Rovis T. Chem. Rev. 2015; 115: 9307
- 21d Enders D, Niemeier O, Henseler A. Chem. Rev. 2007; 107: 5606
- 21e Nair V, Deepthi A. Chem. Rev. 2007; 107: 1862
- 22a Ragno D, Bortolini O, Fantin G, Fogagnolo M, Giovannini PP, Massi A. J. Org. Chem. 2015; 80: 1937
- 22b Huang S, Kotzner L, De CK, List B. J. Am. Chem. Soc. 2015; 137: 3446
- 22c Peralta-Hernández E, Blé-Gonzáles EA, Garcia-Medrano-Bravo VA, Cordero-Vargas A. Tetrahedron 2015; 71: 2234
- 22d Zhang F, Du P, Chen J, Wang H, Luo Q, Wang X. Org. Lett. 2014; 16: 1932
- 22e Bar G, Parsons AF, Thomas CB. Org. Biomol. Chem. 2003; 1: 373
- 22f Bar G, Parsons AF, Thomas CB. Synlett 2002; 1069
- 22g Schweitzer-Chaput B, Demaerel J, Engler H, Klussmann M. Angew. Chem. Int. Ed. 2014; 53: 8737
- 22h Schweitzer-Chaput B, Kurten T, Klussmann M. Angew. Chem. Int. Ed. 2015; 54: 11848
- 22i Christoffers J, Werner T, Frey W, Baro A. Eur. J. Org. Chem. 2003; 4879
- 22j Rossle M, Werner T, Frey W, Christoffers J. Eur. J. Org. Chem. 2005; 5031
- 23a Chen P, Bi B. Tetrahedron Lett. 2015; 56: 4895
- 23b Yoshida K, Morikawa T, Yokozuka N, Harada S, Nishida A. Tetrahedron Lett. 2014; 55: 6907
- 24a Shie J.-J, Workman PS, Evans WJ, Fang J.-M. Tetrahedron Lett. 2004; 45: 2703
- 24b Taydakov IV, Nelyubina TV. Tetrahedron Lett. 2013; 54: 1704
- 24c Szostak R, Aube J, Szoztak M. J. Org. Chem. 2015; 80: 7905
- 25 Representative Synthetic Procedure of Skeleton 4 Tm(OTf)3 (62 mg, 0.1 mmol) was added to a solution of 3 (1.0 mmol) in MeNO2 (5 mL) at r.t. The reaction mixture was stirred at reflux for 3 h. The reaction mixture was cooled to r.t. The solvent of reaction mixture was concentrated and extracted with CH2Cl2 (3 × 10 mL). The combined organic layers were washed with brine, dried, filtered, and evaporated to afford the crude product under reduced pressure. Purification on silica gel (hexanes–EtOAc = 8:1 to 3:1) afforded 4. Compound 4a: Rf = 0.3 (hexanes–EtOAc = 8:1); yield 88% (290 mg); colorless oil. ESI-HRMS: m/z calcd for C18H19O4S [M+ + 1]: 331.1004; found: 331.1010. 1H NMR (400 MHz, CDCl3): δ = 7.91 (d, J= 8.8 Hz, 2 H), 7.58–7.54 (m, 3 H), 7.43–7.39 (m, 2 H), 7.24 (d, J = 8.4 Hz, 2 H), 5.51 (dd, J = 2.8, 10.8 Hz, 1 H), 3.49 (dd, J = 10.8, 18.0 Hz, 1 H), 3.29 (dd, J = 2.8, 18.0 Hz, 1 H), 2.40 (s, 3 H), 2.16 (s, 3 H). 13C NMR (100 MHz, CDCl3): δ = 203.79, 191.59, 145.60, 136.58, 133.68, 133.54, 129.68 (2×), 129.36 (2×), 129.17 (2×), 128.49 (2×), 65.55, 41.87, 29.55, 21.64. Compound 4b: Rf = 0.3 (hexanes–EtOAc = 8:1); yield 86% (299 mg); colorless oil. ESI-HRMS: m/z calcd for C18H18FO4S [M+ + 1]: 349.0910; found: 349.0918. 1H NMR (400 MHz, CDCl3): δ = 7.99–7.94 (m, 2 H), 7.57 (d, J = 8.4 Hz, 2 H), 7.27 (d, J = 8.8 Hz, 2 H), 7.13–7.07 (m, 2 H), 5.43 (dd, J = 2.8, 10.8 Hz, 1 H), 3.47 (dd, J = 10.8, 18.0 Hz, 1 H), 3.27 (dd, J = 2.8, 18.0 Hz, 1 H), 2.42 (s, 3 H), 2.15 (s, 3 H). 13C NMR (100 MHz, CDCl3): δ = 203.81, 190.02, 166.13 (d, J = 255.5 Hz), 145.77, 133.36, 133.03 (d, J = 3.0 Hz), 132.97 (d, J = 9.1 Hz, 2×), 130.53, 129.74, 129.35, 128.84, 115.71 (d, J = 21.9 Hz, 2×), 65.58, 41.99, 29.49, 21.65.
- 26a Bourguignon JJ, Oumouch S, Schmitt M. Curr. Org. Chem. 2006; 10: 277
- 26b Elnagdi MH, Al-Awadi NA, Abdelhamid IA. Adv. Heterocycl. Chem. 2009; 97: 1
- 26c Haider N, Holzer W. Sci. Synth. 2004; 16: 125
- 27a Gyoten M, Nagaya H, Fukuda S, Ashida Y, Kawano Y. Chem. Pharm. Bull. 2003; 51: 122
- 27b Tamayo N, Liao L, Goldberg M, Powers D, Tudor YY, Yu V, Wong LM, Henkle B, Middleton S, Syed R, Harvey T, Jang G, Hungate R, Dominguez C. Bioorg. Med. Chem. Lett. 2005; 15: 2409
- 27c Emmerich J, Hu Q, Hanke N, Hartmann RW. J. Med. Chem. 2013; 56: 6022
For reviews on hydration of alkynes, see:
For Hg2+, see:
For Au+, see:
For Ag+, see:
For Ag+/Au3+, see:
For Ru2+, see:
For Pt2+, see:
For Ir3+, see:
For Pd2+, see:
For Fe3+, see:
For Cu2+, see:
For In3+, see:
For review on Ln(OTf)3-mediated reactions, see:
Metal triflates mediated synthesis by authors, for Sc(OTf)3, see:
For Fe(OTf)3, see:
For Bi(OTf)3, see:
For In(OTf)3, see:
Synthetic applications on α-substituted β-ketosulfones by authors, for styrylsulfones, see:
For vinylcyclopropanes, see:
For 2,5-diaryltetrahydrofurans, see:
For 2,6-diaryltetrahydropyrans, see:
For 2-arylpyrroles, see:
For 2-vinylfurans, see:
For tetralins and benzosuberans, see:
For 1-aryltetralins, see:
For 1-arylnaphthalenes, see:
For phenanthrenes, see:
For phenanthrofurans, see:
For review articles, see:
Tm(OTf)3-mediated reactions, for the Ferrier rearrangement, see:
For Diels–Alder cycloadditions, see:
Recent Tm(III) salts mediated reactions, see:
For recent reviews on synthesis of pyridazines, see:
For the potential biological activities of pyridazines, see: