Synlett 2016; 27(11): 1728-1732
DOI: 10.1055/s-0035-1561941
letter
© Georg Thieme Verlag Stuttgart · New York

Microwave-Assisted Bohlmann–Rahtz Synthesis of Highly Substituted 2-Aminonicotinates

Mark C. Bagley*
Department of Chemistry, School of Life Sciences, University of Sussex, Falmer, Brighton, East Sussex, BN1 9QJ, UK   Email: m.c.bagley@sussex.ac.uk
,
Ayed Alnomsy
Department of Chemistry, School of Life Sciences, University of Sussex, Falmer, Brighton, East Sussex, BN1 9QJ, UK   Email: m.c.bagley@sussex.ac.uk
,
Scott J. Temple
Department of Chemistry, School of Life Sciences, University of Sussex, Falmer, Brighton, East Sussex, BN1 9QJ, UK   Email: m.c.bagley@sussex.ac.uk
› Author Affiliations
Further Information

Publication History

Received: 12 February 2016

Accepted after revision: 03 March 2016

Publication Date:
30 March 2016 (online)


Abstract

Microwave irradiation of 2-carbethoxyacetamidine and an ethynyl ketone under acidic or basic conditions in ethanol at 150 °C for 1.5 hours facilitated Bohlmann–Rahtz pyridine synthesis to give highly substituted ethyl 2-aminonicotinates with total regiocontrol and in reasonable to excellent yield, following purification by immobilization upon an acidic resin.

Supporting Information

 
  • References and Notes

  • 1 Bohlmann F, Rahtz D. Chem. Ber. 1957; 90: 2265
  • 2 For an account of our work, and that of others, on the Bohlmann–Rahtz reaction, see: Bagley MC, Glover C, Merritt EA. Synlett 2007; 2459
  • 3 Bagley MC, Dale JW, Merritt EA, Xiong X. Chem. Rev. 2005; 105: 685
  • 4 Merritt EA, Bagley MC. Synlett 2007; 954
  • 5 Bagley MC, Bashford KE, Hesketh CL, Moody CJ. J. Am. Chem. Soc. 2000; 122: 3301
  • 6 Aulakh VS, Ciufolini MA. J. Org. Chem. 2009; 74: 5750
  • 7 Bagley MC, Hughes DD, Lloyd R, Powers VE. C. Tetrahedron Lett. 2001; 42: 6585
  • 8 Bagley MC, Dale JW, Hughes DD, Ohnesorge M, Phillips NG, Bower J. Synlett 2001; 1523
  • 9 Hughes DD, Bagley MC. Synlett 2002; 1332
  • 10 Davis JM, Truong A, Hamilton AD. Org. Lett. 2005; 7: 5405
  • 11 Adlington RM, Baldwin JE, Catterick D, Pritchard GJ, Tang LT. J. Chem. Soc., Perkin Trans. 1 2000; 2311
  • 12 Adlington RM, Baldwin JE, Catterick D, Pritchard GJ, Tang LT. J. Chem. Soc., Perkin Trans. 1 2000; 303
  • 13 Adamo MF. A, Adlington RM, Baldwin JE, Pritchard GJ, Rathmell RE. Tetrahedron 2003; 59: 2197
  • 14 Bagley MC, Xiong X. Org. Lett. 2004; 6: 3401
  • 15 Moody CJ, Bagley MC. Synlett 1998; 361
  • 16 Bagley MC, Dale JW, Ohnesorge M, Xiong X, Bower J. J. Comb. Chem. 2003; 5: 41
  • 17 Bashford KE, Burton MB, Cameron S, Cooper AL, Hogg RD, Kane PD, MacManus DA, Matrunola CA, Moody CJ, Robertson AA. B, Warneb MR. Tetrahedron Lett. 2003; 44: 1627
  • 18 Bagley MC, Lin Z, Pope SJ. A. Chem. Commun. 2009; 5165
  • 19 Xiong X, Bagley MC, Chapaneri K. Tetrahedron Lett. 2004; 45: 6121
  • 20 Bagley MC, Brace C, Dale JW, Ohnesorge M, Phillips NG, Xiong X, Bower J. J. Chem. Soc., Perkin Trans. 1 2002; 1663
  • 21 Bagley MC, Dale JW, Bower J. Synlett 2001; 1149
  • 22 Bagley MC, Lunn R, Xiong X. Tetrahedron Lett. 2002; 43: 8331
  • 23 Bagley MC, Jenkins RL, Lubinu MC, Mason C, Wood R. J. Org. Chem. 2005; 70: 7003
  • 24 Bagley MC, Fusillo V, Jenkins RL, Lubinu MC, Mason C. Beilstein J. Org. Chem. 2013; 9: 1957
  • 25 Bagley MC, Chapaneri K, Dale JW, Xiong X, Bower J. J. Org. Chem. 2005; 70: 1389
  • 26 Bagley MC, Hughes DD, Sabo HM, Taylor PH, Xiong X. Synlett 2003; 1443
  • 27 Bagley MC, Glover C, Merritt EA, Xiong X. Synlett 2004; 811
  • 30 Kidwai M, Thakur R, Saxena S. J. Heterocycl. Chem. 2005; 42: 1181
  • 32 Surivet J.-P, Lange R, Hubschwerlen C, Keck W, Specklin J.-L, Ritz D, Bur D, Locher H, Seiler P, Strasser DS, Prade L, Kohl C, Schmitt C, Chapoux G, Ilhan E, Ekambaram N, Athanasiou A, Knezevic A, Sabato D, Chambovey A, Gaertner M, Enderlin M, Boehme M, Sippel V, Wyss P. Bioorg. Med. Chem. Lett. 2012; 22: 6705
  • 33 Fischer M, Troschütz R. Synthesis 2003; 1603
  • 34 Bagley MC, Lin Z, Pope SJ. A. Tetrahedron Lett. 2009; 50: 6818
  • 35 Bagley MC, Hughes DD, Lubinu MC, Merritt EA, Taylor PH, Tomkinson NC. O. QSAR Comb. Sci. 2004; 23: 859
  • 36 Bagley MC, Hughes DD, Taylor PH. Synlett 2003; 259
  • 37 McElvain SM, Tate BE. J. Am. Chem. Soc. 1951; 73: 2760
  • 38 Roth B, Smith JM. Jr. J. Am. Chem. Soc. 1949; 71: 616
  • 39 Morgentin R, Jung F, Lamorlette M, Maudet M, Ménard M, Plé P, Pasquet G, Renaud F. Tetrahedron 2009; 65: 757
  • 40 Kobayashi T, Inoue T, Kita Z, Yoshiya H, Nishino S, Oizumi K, Kimura T. Chem. Pharm. Bull. 1995; 43: 788
  • 41 Meyer H, Bossert F, Horstmann H. Liebigs Ann. Chem. 1977; 1895
  • 42 Typical Procedure for Microwave-Assisted Synthesis of 2-Aminonicotinates Using Hydrochloride Salt 6·HCl: A solution of ethyl 3-amino-3-iminopropionate hydrochloride (6·HCl; 1 equiv) and the ethynyl ketone (1.05 equiv) in EtOH (3 mL) was irradiated at 150 °C for 1.5 h (hold time) in a pressure-rated glass tube (10 mL) using a CEM Discover® microwave synthesizer by moderation of the initial magnetron power (200 W). After cooling in a flow of compressed air, the solution was immobilized on a Biotage ISOLUTE SCX-2 column and eluted with EtOH–NH4OH (aq, 35%; 5:1) to give the title compound.
  • 43 Typical Procedure for Microwave-Assisted Synthesis of 2-Aminonicotinates Using Free Base 6: An ethanolic solution of ethyl 3-amino-3-iminopropionate hydrochloride (6·HCl; 1 equiv) was pretreated with Na2CO3 (1 equiv) for 10 min. After filtering, the ethynyl ketone (1.05 equiv) was added and the mixture in EtOH (3.5 mL) was irradiated at 150 °C for 1.5 h (hold time) in a pressure-rated glass tube (10 mL) using a CEM Discover® microwave synthesizer by moderation of the initial magnetron power (200 W). After cooling in a flow of compressed air, the solution was immobilized on a Biotage ISOLUTE SCX-2 column and eluted with EtOH–NH4OH (aq; 35%; 5:1) or ethanolic NH3 (2 M) to give the title compound.
  • 44 See Supporting Information for detailed experimental procedures and characterization data for known compounds. Ethyl 2-amino-6-methyl-4-phenylnicotinate (12b) was prepared using the above procedure,43 with ethyl 3-amino-3-iminopropionate hydrochloride (6·HCl; 270 mg, 1.62 mmol), 4-phenyl-3-butyn-2-one (11b; 270 mg, 1.70 mmol) and Na2CO3 (270 mg, 1.62 mmol), in EtOH (3.5 mL), to give the title compound (216 mg, 52%) as a brown solid; mp 139 °C. IR (neat): 3443, 3272, 2977, 1682, 1606, 1582, 1241 cm–1. 1H NMR (500 MHz, CDCl3): δ = 7.30–7.33 (3 H, 3′-H, 4′-H, 5′-H), 7.20 (m, 2 H, 2′-Η, 6′-H), 6.41 (s, 1 H, 5-H), 6.29 (br s, 2 H, NH2), 3.88 (q, J = 7.1 Hz, 2 H, OCH2), 2.37 (s, 3 H, Me), 0.69 (t, J = 7.1 Hz, 3 H). 13C NMR (125 MHz, CDCl3): δ = 168.5 (C), 160.3 (C), 158.7 (C), 153.8 (C), 141.5 (C), 127.9 (CH/CH), 127.4 (CH), 115.2 (CH), 104.7 (C), 60.4 (CH2), 24.2 (Me), 13.1 (Me). MS (EI): m/z = 256 [M·+]. HRMS: m/z [M + H] calcd for C15H17N2O2: 257.1285; found: 257.1278. Ethyl 2-amino-4-ethyl-6-methylnicotinate (12c) was prepared using the above procedure,43 with ethyl 3-amino-3-iminopropionate hydrochloride (6·HCl) (200 mg, 1.26 mmol), 3-hexyn-2-one (128 mg, 1.32 mmol), and Na2CO3 (200 mg, 1.26 mmol) in EtOH (3.5 mL), to give the title compound (133 mg, 54%) as a brown solid; mp 141 °C. IR (neat): 3450, 3269, 3147, 2972, 1686, 1619, 1586 cm–1. 1H NMR (500 MHz, CDCl3): δ = 6.33 (s, 1 H, 5-H), 6.19 (br s, 2 H, NH2), 4.33 (q, J = 7.0 Hz, 2 H, OCH2), 2.78 (q, J = 7.0 Hz, 2 H, 4-CH 2CH3), 2.30 (s, 3 H, 6-Me), 1.36 (t, J = 7.0 Hz, 3 H, Me), 1.16 (t, J = 7.0 Hz, 3 H, 4-CH2Me). 13C NMR (125 MHz, CDCl3): δ = 168.3 (C), 160.3 (C), 159.4 (C), 157.2 (C), 114.8 (CH), 104.6 (C), 60.7 (CH2), 28.6 (CH2), 23.9 (Me), 15.1 (Me), 14.0 (Me). HRMS: m/z [M + H] calcd for C11H17N2O2: 209.1285; found: 209.1282.