Synlett 2016; 27(11): 1720-1724
DOI: 10.1055/s-0035-1561952
letter
© Georg Thieme Verlag Stuttgart · New York

Synthesis of 2-Amino-4-(3-amino-5-hydroxy-4H-pyrazol-4-ylidene)-4H-chromene-3-carbonitriles

Mansing M. Mane
Department of Chemistry, Shivaji University, Kolhapur 416 004, India   Email: p_dattaprasad@rediffmail.com
,
Dattaprasad M. Pore*
Department of Chemistry, Shivaji University, Kolhapur 416 004, India   Email: p_dattaprasad@rediffmail.com
› Author Affiliations
Further Information

Publication History

Received: 09 January 2016

Accepted after revision: 03 March 2016

Publication Date:
05 April 2016 (online)


Abstract

A simple and efficient protocol was developed for the synthesis of 2-amino-4-(3-amino-5-hydroxy-4H-pyrazol-4-ylidene)-4H-chromene-3-carbonitriles by the potassium phosphate-catalyzed reaction of salicylaldehydes, malononitrile, and 2-cyanoacetohydrazide in ethanol. The method offers advantages such as a simple workup procedure and good yields. When the method was extended to two equivalents of 2-cyanoacetohydrazide instead of malononitrile, the unexpected formation of a salicylaldehyde azine was observed, leading to a novel route for the synthesis of salicylaldehyde azines.

Supporting Information

 
  • References

  • 1 Dömling A, Ugi I. Angew. Chem. Int. Ed. 2000; 39: 3168
  • 2 Gore RP, Rajput AP. Drug Invent. Today 2013; 5: 148
  • 4 Rupnar BD, Rokade PB, Gaikwad PD, Pangrikar PP. Int. J. Chem. Environ. Biol. Sci. (IJCEBS) 2014; 2: 83 ; http://www.isaet.org/images/extraimages/K314023.pdf;
    • 5a The Flavonoids: Advances in Research Since 1980 . Harborne JB. Chapman & Hall; London: 1988
    • 5b Parmar VS, Jain SC, Bisht SK, Jain R, Taneja P, Jha A, Tyagi OD, Prasad AK, Wengel J, Olsen CE. Boll P. M. 1997; 46: 597
    • 5c Gill M. Aust. J. Chem. 1995; 48: 1
    • 5d Bohm BA, Choy JB, Lee AY.-M. Phytochemistry 1989; 28: 501
    • 5e Iacobucci GA, Sweeny JG. Tetrahedron 1983; 39: 3005
    • 6a Kemnitzer W, Drewe J, Jiang S, Zhang H, Zhao J, Crogan-Grundy C, Xu L, Lamothe S, Gourdeau H, Denis R, Tseng B, Kasibhatla S, Cai SX. J. Med. Chem. 2007; 50: 2858
    • 6b Kasibhatla S, Gourdeau H, Meerovitch K, Drewe J, Reddy S, Qiu L, Zhang H, Bergeron F, Bouffard D, Yang D, Herich J, Lamothe S, Cai SX, Tseng B. Mol. Cancer Ther. 2004; 3: 1365
    • 6c Gourdeau H, Leblond L, Hamelin B, Desputeau C, Dong K, Kianicka I, Custeau D, Bourdeau C, Geerts L, Xiong S, Cai S, Drewe J, Labrecque D, Kasibhatla S, Tseng BB. Mol. Cancer Ther. 2004; 3: 1375
    • 6d Bonsignore L, Loy G, Secci D, Calignano A. Eur. J. Med. Chem. 1993; 28: 517
    • 7a Ellis GP In The Chemistry of Heterocyclic Compounds . Weissberger GA, Taylor EC. John-Wiley; New York: 1977. Chap. 2, 11
    • 7b Hafez EA. A, Elnagdi MH, Elagamey AG. A, El-Taweel FM. A. A. Heterocycles 1987; 26: 903
    • 8a Madhu NT, Radhakrishnan PK, Grunert M, Weinberger P, Linert W. Rev. Inorg. Chem. 2003; 23: 1
    • 8b Kees KL, Fitzgerald JJ. Jr, Steiner KE, Mattes JF, Mihan B, Tosi T, Mondoro D, McCaleb ML. J. Med. Chem. 1996; 39: 3920
    • 8c Wise LD, Butler DE, DeWald HA, Lustgarten DM, Pattison IC, Schweiss DN, Coughenour LL, Downs DA, Heffner TG, Pugsley TA. J. Med. Chem. 1987; 30: 807
    • 8d van Herk T, Brussee J, van den Nieuwendijk AM. C. H, van der Klein MA, Ijzerman AP, Stannek C, Burmeister A, Lorenzen A. J. Med. Chem. 2003; 46: 3945
    • 8e Rosiere CE, Grossman MI. Science 1951; 113: 651
    • 8f Singh P, Paul K, Holzer W. Bioorg. Med. Chem. 2006; 14: 5061
    • 9a Pore DM, Desai UV, Thopate TS, Wadgaonkar PP. Russ. J. Org. Chem. 2007; 43: 1088
    • 9b Pore DM, Soudagar MS, Desai UV, Thopate TS, Wadgaonkar PP. Tetrahedron Lett. 2006; 47: 9325
    • 9c Pore DM, Shaikh TS, Undale AK, Gaikwad DS. C. R. Chimie 2010; 13: 1429
    • 9d Pore DM, Patil PB, Gaikwad DS, Hegade PG, Patil JD, Undale KA. Tetrahedron Lett. 2013; 54: 5876
  • 10 Jain MP, Kumar S. Talanta 1978; 26: 909
  • 11 Hopkins JM, Bowdridge M, Robertson KN, Cameron TS, Jenkins HA, Clyburne JA. C. J. Org. Chem. 2001; 66: 5713
  • 12 Wu C.-Y, Chen Y, Jing S.-Y, Lee C.-S, Dinda J, Hwang W.-S. Polyhedron. 2006; 25: 3053
  • 13 Kesslen EC, Euler WB, Foxman BM. Chem. Mater. 1999; 11: 336
  • 14 Abdel-Aziz HA, Elsaman T, Attia MI, Alanazi AM. Molecules. 2013; 18: 2084
  • 15 Jain MP, Kumar S. Talanta 1979; 26: 909
  • 16 Zhang S, Yang L, Xiao Y. Faming Zhuanli Shenqing 2013; CN 103254098 A 20130821
  • 17 2-Amino-4-(3-amino-5-hydroxy-4H-pyrazol-4-ylidene)-4H-chromene-3-carbonitriles 4af; General Procedure A mixture of the appropriate salicylaldehyde 1 (1 mmol) and malononitrile (2; 1 mmol) in EtOH (2 mL) in a 25 mL round-bottomed flask was stirred at r.t. in the presence of K3PO4 (20 mol%) for 10–20 min. 2-Cyanoacetohydrazide (3; 1 mmol) was added, and the mixture was stirred under reflux in an oil bath for the appropriate time (Table 2) while the progress of reaction was monitored by TLC. When the reaction was complete, the mixture was poured into ice-cold water, and the precipitate was collected by filtration and washed with EtOH. 2-Amino-4-(3-amino-5-hydroxy-4H-pyrazol-4-ylidene)-4H-chromene-3-carbonitrile (4a) Yellow powder; yield: 200 mg (75%); mp 270 °C. IR (KBr): 3400 (OH), 3359–3282 (NH2), 2206 (CN), 1615 (C=N), 1496, 1353, 760 cm–1. 1H NMR (300 MHz, DMSO-d 6): δ = 5.66 (s, 2 H, NH2, D2O exchangeable), 6.89–6.98 (m, 2 H, Ar), 7.15–7.18 (m, 1 H, Ar), 7.28–7.34 (m, 1 H, Ar), 8.31 (s, 2 H, NH2, D2O exchangeable), 10.02 (s, 1 H, OH, D2O exchangeable). 13C NMR (75 MHz, DMSO-d 6): δ = 75.83, 88.0, 115.86, 116.50, 116.76, 119.40, 122.41, 129.56, 131.63, 154.30, 156.92, 158.56, 159.75. MS (EI): m/z (%) = 267 (100) [M+], 250, 238, 210, 181, 126, 88, 63, 51.