RSS-Feed abonnieren
Bitte kopieren Sie die angezeigte URL und fügen sie dann in Ihren RSS-Reader ein.
https://www.thieme-connect.de/rss/thieme/de/10.1055-s-00000083.xml
Synlett 2016; 27(18): 2597-2600
DOI: 10.1055/s-0035-1562609
DOI: 10.1055/s-0035-1562609
letter
Silver Nitrate Mediated Cyclization/N–N Bond-Cleavage Reaction for the Synthesis of 3-Arylisoquinolines
Weitere Informationen
Publikationsverlauf
Received: 03. Juni 2016
Accepted after revision: 12. Juli 2016
Publikationsdatum:
03. August 2016 (online)
Abstract
An unprecedented silver nitrate mediated novel transformation of aromatic hydrazones into various isoquinolines has been developed. This method involves a silver nitrate promoted cyclization of aromatic hydrazones followed by N–N bond cleavage, and has wide substrate scope under mild conditions.
Supporting Information
- Supporting information for this article is available online at http://dx.doi.org/10.1055/s-0035-1562609.
- Supporting Information
-
References and Notes
- 1a Chrzanowska M, Rozwadowska MD. Chem. Rev. 2004; 104: 3341
- 1b Giri P, Kumar GS. Mini-Rev. Med. Chem. 2010; 10: 568
- 2a Negishi E.-i, Copéret C, Ma S, Liou S.-Y, Liu F. Chem. Rev. 1996; 96: 365
- 2b Aoki S, Watanabe Y, Sanagawa M, Setiawan A, Kotoku N, Kobayashi M. J. Am. Chem. Soc. 2006; 128: 3148
- 2c Wada Y, Nishida N, Kurono N, Ohkuma T, Orito K. Eur. J. Org. Chem. 2007; 4320
- 2d Sun Y, Xun K, Wang Y, Chen X. Anti-Cancer Drugs 2009; 20: 757
- 2e Li Y.-H, Yang P, Kong W.-J, Wang Y.-X, Hu C.-Q, Zuo Z.-Y, Wang Y.-M, Gao H, Gao L.-M, Feng Y.-C, Du N.-N, Liu Y, Song D.-Q, Jiang J.-D. J. Med. Chem. 2009; 52: 492
- 2f Zhang S, Huang D, Xu G, Cao S, Wang R, Peng S, Sun J. Org. Biomol. Chem. 2015; 13: 7920
- 3a Nakamura I, Yamamoto Y. Chem. Rev. 2004; 104: 2127
- 3b Zeni G, Larock RC. Chem. Rev. 2004; 104: 2285
- 3c Uchiyama M, Furuyama T, Kobayashi M, Matsumoto Y, Tanaka K. J. Am. Chem. Soc. 2006; 128: 8404
- 3d Furuyama T, Yonehara M, Arimoto S, Kobayashi M, Matsumoto Y, Uchiyama M. Chem. Eur. J. 2008; 14: 10348
- 3e Seomoon D, Lee PH. J. Org. Chem. 2008; 73: 1165
- 3f Korivi RP, Cheng C.-H. Chem. Eur. J. 2010; 16: 282
- 3g Lee K, Kim H, Mo J, Lee PH. Chem. Asian J. 2011; 6: 2147
- 3h Liu Y, Zeng R, Pan J, Zou J. Chin. J. Chem. 2014; 32: 883
- 3i Shi L, Ji Y, Huang W, Zhou Y. Acta Chim. Sin. 2014; 72: 820 ; DOI: 10.6023/A14050391
- 4a Vachhani DD, Mehta VP, Modha SG, Van Hecke K, VanMeervelt L, Van der Eycken E. Adv. Synth. Catal. 2012; 354: 1593
- 4b Roesch KR, Larock RC. J. Org. Chem. 2002; 67: 86
- 5a Chen Z, Gao L, Ye S, Ding Q, Wu J. Chem. Commun. 2012; 48: 3975
- 5b Xiao Q, Sheng J, Ding Q, Wu J. Adv. Synth. Catal. 2013; 355: 2321
- 6a He R, Huang Z.-T, Zheng Q.-Y, Wang C. Angew. Chem. Int. Ed. 2014; 53: 4950
- 6b Zhou B, Chen H, Wang C. J. Am. Chem. Soc. 2013; 135: 1264
- 6c Dell’Acqua M, Abbiati G, Rossi E. Synlett 2010; 2672
- 7a Salvatore RN, Yoon CH, Jung KW. Tetrahedron 2001; 57: 7785
- 7b Kienle M, Dubbaka SR, Brade K, Knochel P. Eur. J. Org. Chem. 2007; 4166
- 8a Han W, Zhang G, Li G, Huang H. Org. Lett. 2014; 16: 3532
- 8b Huang X.-C, Yang X.-H, Song R.-J, Li J.-H. J. Org. Chem. 2014; 79: 1025
- 8c Chuang S.-C, Gandeepan P, Cheng C.-H. Org. Lett. 2013; 15: 5750
- 8d Subbarao KP. V, Reddy GR, Muralikrishna A, Reddy KV. J. Heterocycl. Chem. 2014; 51: 1045
- 9a Verma AK, Kotla SK. R, Choudhary D, Patel M, Tiwari RK. J. Org. Chem. 2013; 78: 4386
- 9b Verma AK, Choudhary D, Saunthwal RK, Rustagi V, Patel M, Tiwari RK. J. Org. Chem. 2013; 78: 6657
- 10a Zhao Y.-H, Li Y, Guo T, Tang Z, Deng K, Zhao G. Synth. Commun. 2016; 46: 355
- 10b Zhao Y.-H, Li Y, Guo T, Tang Z, Xie W, Zhao G. Tetrahedron Lett. 2016; 57: 2257
- 10c Li Y, Zhao Y, Luo M, Tang Z, Cao C, Deng K. Chin. J. Org. Chem. 2016;
- 11 Ghavtadze N, Fröhlich R, Würthwein E.-U. Eur. J. Org. Chem. 2010; 1787
- 12 3-Phenylisoquinolines (2a); 13 Typical ProcedureTo a solution of 2-(phenylethynyl)benzaldehyde (1a; 62.0 mg, 0.3 mmol) in EtOH (5 mL) was added N2H4·HCl (30.6 mg, 0.45 mmol), and the mixture was stirred at r.t. for 3 h. The solid was then collected by filtration and used in the next step without further purification. The crude aromatic hydrazones 3a was dissolved in DMSO (3 mL) and AgNO3 (51.0 mg, 0.3 mmol) was added. The mixture was stirred at 100 °C until all starting material was consumed. The solvent was evaporated and the residue was purified by column chromatography, eluting with hexanes/EtOAc (5:1) to give a white solid; yield: 35 mg (57%); mp 97–99 °C; 1H NMR (500 MHz, CDCl3): δ = 9.37 (s, 1 H), 8.16 (d, J = 7.5 Hz, 2 H), 8.10 (s, 1 H), 8.02 (d, J = 8.0 Hz, 1 H), 7.91–7.89 (d, J = 8.0 Hz, 1 H), 7.75–7.70 (m, 1 H), 7.63–7.60 (m, 1 H), 7.56–7.53 (m, 2 H), 7.47–7.44 (m, 1 H); 13C NMR (125 MHz, CDCl3): δ = 152.5 , 151.3, 139.6, 136.7, 130.6, 128.8, 128.6, 127.8, 127.6, 127.1, 127.0, 126.9, 116.6. The NMR data agreed with those previously reported.
- 13 Niu Y.-N, Yan Z.-Y, Gao G.-L, Wang H.-L, Shu X.-Z, Ji K.-G, Liang Y.-M. J. Org. Chem. 2009; 74: 2893