Synlett 2016; 27(16): 2391-2395
DOI: 10.1055/s-0035-1562782
letter
© Georg Thieme Verlag Stuttgart · New York

Stereoselective Approach for the Synthesis of 2-epi-Hyacinthacine A2, (–)-7a-epi-Hyacinthacine A1, 1-Deoxy-d-altro-homonojirimycin, and Some Pyrrolidine Iminosugars

Sahadev S. Chirke
Academy of Scientific and Innovative Research, New Delhi, Organic and Biomolecular Chemistry Division, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad, 500 007, India   eMail: venky@iict.res.in   eMail: drb.venky@gmail.com
,
Batchu Venkateswara Rao*
Academy of Scientific and Innovative Research, New Delhi, Organic and Biomolecular Chemistry Division, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad, 500 007, India   eMail: venky@iict.res.in   eMail: drb.venky@gmail.com
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Received: 05. Mai 2016

Accepted after revision: 17. Juni 2016

Publikationsdatum:
19. Juli 2016 (online)


Abstract

A divergent approach has been developed for the synthesis of some important iminosugars by stereoselective allylation of the lyxosylamine derived from d-lyxose and intramolecular 5-exo-tet ring opening of the epoxide. The strategy described in this paper will be useful for the synthesis of some other biologically active iminosugars for the drug-discovery program.

Supporting Information

 
  • References and Notes

    • 1a Jones IM, Jacob GS. Nature (London, U.K.) 1991; 352: 198
    • 1b Ratner L. AIDS Res. Hum. Retroviruses 1992; 8: 165
    • 1c Alves MJ, García-Mera X, Vale ML. C, Santos TP, Aguiar FR, Rodríguez-Borges JE. Tetrahedron Lett. 2006; 47: 7595
  • 2 Chand P, Kotian PL, Dehghani A, El-Kattan Y, Lin T.-H, Hutchison TL, Sudhakar Babu Y, Bantia S, Elliott AJ, Montgomery JA. J. Med. Chem. 2001; 44: 4379
  • 3 Castillo JA, Calveras J, Casas J, Mitjans M, Vinardell MP, Parella T, Inoue T, Sprenger GA, Joglar J, Clapés P. Org. Lett. 2006; 8: 6067
    • 4a Robinson KM, Begovic HE, Rhinehart RL, Heineke EW, Ducep J.-B, Kastner PR, Marshall FN, Danzin C. Diabetes 1991; 40: 825
    • 4b Chang C.-F, Ho C.-W, Wu CY, Chao T.-A, Wong C.-H, Lin C.-H. Chem. Biol. 2004; 11: 1301
    • 5a Dwek RA, Butters TD, Platt FM, Zitzmann N. Nat. Rev. Drug Discovery 2002; 1: 65
    • 5b Butters TD, Dwek RA, Platt FM. Glycobiology 2005; 15: 43R
    • 5c Kato A, Nakagome I, Sato K, Yamamoto A, Adachi I, Nash RJ, Fleet GW. J, Natori Y, Watanabe Y, Imahori T, Yoshimura Y, Takahata H, Hirono S. Org. Biomol. Chem. 2016; 14: 1039
    • 6a Bernacki RJ, Korytnyk W. Cancer Metastasis Rev. 1985; 4: 81
    • 6b Humphries MJ, Matsumoto K, White SL, Olden K. Cancer Res. 1986; 46: 5215
    • 7a Platt FM, Neises GR, Dwek RA, Butters TD. J. Biol. Chem. 1994; 269: 8362
    • 7b Iminosugars: From Synthesis to Therapeutic Applications. Compain P, Martin OR. Wiley-VCH; Weinheim: 2007
    • 8a El Nemr A. Tetrahedron 2000; 56: 8579
    • 8b Cenci di Bello I, Fleet G, Namgoong SK, Tadano KI, Winchester B. Biochem. J. 1989; 259: 855
    • 8c Pearson WH, Guo L. Tetrahedron Lett. 2001; 42: 8267
    • 9a Kato A, Miyauchi S, Kato N, Nash RJ, Yoshimura Y, Nakagome I, Hirono S, Takahata H, Adachi I. Bioorg. Med. Chem. 2011; 19: 3558
    • 9b Horne G, Wilson FX, Tinsley J, Williams DH, Storer R. Drug Discovery Today 2011; 16: 107
    • 9c http://www.emea.europa.eu/docs/en_GB/document_library/Orphan_designation/2009/10/WC500006482.pdf.
  • 10 Markad SD, Karanjule NS, Sharma T, Sabharwal SG, Dhavale DD. Org. Biomol. Chem. 2006; 4: 3675
    • 11a Galawar AF. G, Jenkinson SF, Newberry SJ, Thompson AL, Nakagawa S, Yoshihara A, Akimitsu K, Izumori K, Butters TD, Kato A, Fleet GW. J. Org. Biomol. Chem. 2013; 11: 6886
    • 11b Lenagh-Snow GM. J, Jenkinson SF, Newberry SJ, Kato A, Nakagawa S, Adachi I, Wormald MR, Yoshihara A, Morimoto K, Akimitsu K, Izumori K, Fleet GW. J. Org. Lett. 2012; 14: 2050
    • 11c Lumbroso A, Beaudet I, Toupet L, Grognec EL, Quintard J.-P. Org. Lett. 2013; 15: 160
    • 12a Desvergnes V, Landais Y. Stud. Nat. Prod. Chem. 2014; 42: 373
    • 12b Ritthiwigrom T, Au CW. G, Pyne SG. Curr. Org. Synth. 2012; 9: 583
    • 13a Bergeron-Brlek M, Meanwell M, Britton R. Nat. Commun. 2015; 6: 6903
    • 13b Lahiri R, Palanivel A, Kulkarni SA, Vankar YD. J. Org. Chem. 2014; 79: 10786
    • 13c Eum H, Choi J, Cho C.-G, Ha H.-J. Asian J. Org. Chem. 2015; 4: 1399
    • 14a Taylor DL, Nash RJ, Fellows LE, Kang MS, Tyms AS. Antiviral Chem. Chemother. 1992; 3: 273
    • 14b Savaspun K, Au CW. G, Pyne SG. J. Org. Chem. 2014; 79: 4569
    • 14c Reddy PV, Smith J, Kamath A, Jamet H, Veyron A, Koos P, Philouze C, Greene AE, Delair P. J. Org. Chem. 2013; 78: 4840
    • 14d Smith J, Kamath A, Greene AE, Delair P. Synlett 2014; 25: 209
    • 14e Veyron A, Reddy PV, Koos P, Bayle A, Greene AE, Delair P. Tetrahedron: Asymmetry 2015; 26: 85
  • 15 Asano N, Ikeda K, Kasahara M, Arai Y, Kizu H. J. Nat. Prod. 2004; 67: 846
    • 16a Garrabou X, Gomez L, Joglar J, Gil S, Parella T, Bujons J, Clapés P. Chem. Eur. J. 2010; 16: 10691
    • 16b Marjanovic J, Divjakovic V, Matovic R, Ferjancic Z, Saicic RN. Eur. J. Org. Chem. 2013; 5555
  • 17 Shibano M, Kitagawa S, Nakamura S, Akazawa N, Kusano G. Chem. Pharm. Bull. 1997; 45: 700
  • 18 Calveras J, Egido-Gabás M, Gómez L, Casas J, Parella T, Joglar J, Bujons J, Clapés P. Chem. Eur. J. 2009; 15: 7310
    • 19a Song Y.-Y, Kinami K, Kato A, Jia Y.-M, Li Y.-X, Fleet GW. J, Yu C.-Y. Org. Biomol. Chem. 2016; 14: 5157
    • 19b Zhao H, Kato A, Sato K, Jia Y.-M, Yu C.-Y. J. Org. Chem. 2013; 78: 7896
    • 19c Hama N, Aoki T, Miwa S, Yamazaki M, Sato T, Chida N. Org. Lett. 2011; 13: 616
    • 20a Lingamurthy M, Jagadeesh Y, Ramakrishna K, Rao BV. J. Org. Chem. 2016; 81: 1367
    • 20b Muniraju C, Rao MV, Rajender A, Rao BV. Tetrahedron Lett. 2016; 57: 1763
    • 20c Chirke SS, Rajender A, Rao BV. Tetrahedron 2014; 70: 103
    • 20d Rajender A, Rao JP, Rao BV. Tetrahedron: Asymmetry 2011; 22: 1306
    • 20e Rajender A, Rao BV. Tetrahedron Lett. 2013; 54: 2329
    • 20f Kumar BS, Mishra GP, Rao BV. Tetrahedron 2016; 72: 1830
    • 20g Kumar BS, Mishra GP, Rao BV. Tetrahedron Lett. 2013; 54: 2845
  • 21 Rao JP, Rao BV, Swarnalatha JK. Tetrahedron Lett. 2010; 51: 3083
    • 22a Oroz-Guinea I, Hernández K, Bres FC, Guérard-Hélaine C, Lemaire M, Clapés P, García-Junceda E. Adv. Synth. Catal. 2015; 357: 1951

    • A little variation in the spectral data of compound 16 is observed with reported data, see:
    • 22b Affolter O, Baro A, Frey W, Laschat S. Tetrahedron 2009; 65: 6626
    • 22c Brock EA, Davies SG, Lee JA, Roberts PM, Thomson EJ. Org. Lett. 2011; 13: 1594
    • 22d Brock EA, Davies SG, Lee JA, Roberts PM, Thomson JE. Org. Biomol. Chem. 2013; 11: 3187
    • 22e Si C.-M, Mao Z.-Y, Ren R.-G, Du Z.-T, Wei B.-G. Tetrahedron 2014; 67: 7936
    • 22f Tang S, Xiong D.-C, Jiang S, Ye X.-S. Org. Lett. 2016; 18: 568
    • 22g Bini D, Cardona F, Forcella M, Parmeggiani C, Parenti P, Nicotra F, Cipolla L. Beilstein J. Org. Chem. 2012; 8: 514
  • 23 Chang C.-W, Chen Y.-N, Adak AK, Lin K.-H, Der-Lii M, Tzoua D.-LM, Linc C.-C. Tetrahedron 2007; 63: 4310
  • 24 Synthetic Procedure and Spectroscopic Data for Compound 3 Tosyl compound 19 (0.1 g, 0.16 mmol) was subjected to hydro­genolysis using Pd/C (10 mg), NaHCO3 (5 mg) under H2 atmosphere and stirred for 6 h. Then 6 M HCl (1 mL) was added, and the reaction mixture stirred for a further 6 h. The catalyst was filtered through the pad of Celite®, and the filtrate was neutralized with aq NaOH. The solvent was removed in vacuo, and the crude product was purified by ion-exchange resin (DOWEX 50WX8) to give the title compound 1-deoxy-d-altro-homonojirimycin (3) as a yellow oil (27 mg, 91%). [α]D 26 +27.2 (c 0.95, MeOH) {lit.10 [α]D 25 +26.7 (c 0.68, MeOH)}. IR (neat, KBr): νmax = 1067, 1466, 2925, 3415 cm–1. 1H NMR (300 MHz, D2O): δ = 1.50–1.85 (m, 4 H), 2.82 (m, 1 H), 2.92–3.21 (m, 2 H), 3.64 (t, 2 H, J = 5.2 Hz), 3.78 (1 H, dd, J = 2.7, 9.0 Hz), 3.87–4.07 (m, 2 H). 13C NMR (75 MHz, D2O): δ = 26.27, 27.83, 44.53, 55.45, 61.59, 68.50, 69.15, 69.74. ESI-HRMS (Orbitrap): m/z calcd for C8H18O4N [M + H]+: 192.12303; found: 192.12305.
  • 25 Synthetic Procedure and Spectroscopic Data for Compound 6 To a stirred solution of epoxy alcohol 22 (80 mg, 0.17 mmol) in CH2Cl2 (1 mL), Et3N (0.1 mL, 0.26 mmol), methanesulfonyl chloride (0.1 mL, 0.21 mmol) followed by catalytic amount of DMAP were added at 0 °C under N2 atmosphere. After 30 min, brine solution was added and aqueous phase was extracted by CH2Cl2 (2 × 2 mL), dried over anhydrous Na2SO4, filtered, and evaporated under reduced pressure to obtain the mesylated crude product. Without further purification, the resulting crude product was subjected to catalytic hydrogenolysis in MeOH (1 mL) using 10% Pd/C, NaHCO3 (5 mg) under H2 atmosphere and stirred for 6 h. Then 6 M HCl (1 mL) was added, and the reaction mixture stirred for a further 6 h. The catalyst was filtered through the pad of Celite®, and the filtrate was neutralized with aq NaOH. Solvent was removed in vacuo, and the crude product was purified by ion-exchange resin (DOWEX 50WX8) to give the title compound 6 as a solid (27 mg, 90% yield); mp 166–168 °C {lit.16b mp 165–167 °C); [α]D 26 –30.5 (c 2.0, H2O) {lit.16a [α]D 22 –26.5 (c 2.0, H2O). IR (neat, KBr): νmax = 1042, 1114, 2923, 3377 cm–1. 1H NMR (300 MHz, D2O): δ = 1.70–2.02 (m, 4 H), 2.71 (m, 1 H), 2.80–3.02 (m, 2 H), 3.38 (m, 1 H), 3.67 (dd, 1 H, J = 6.5, 11.0 Hz), 3.83 (m, 1 H), 3.91 (dd, 1 H, J = 4.1, 8.8 Hz), 4.25 (dd, 1 H, J = 1.6, 3.3 Hz). 13C NMR (75 MHz, D2O): δ = 26.95, 31.67, 56.78, 62.59, 69.33, 71.34, 75.94, 79.34. HRMS: m/z calcd for C8H16NO3 [M + H]+: 174.11247; found: 174.11245.
    • 26a Baldwin JE. J. Chem. Soc., Chem. Commun. 1976; 734
    • 26b Moriarty RM, Mitan CI, Nichita N.-B, Phares KR, Parrish D. Org. Lett. 2006; 8: 3465
  • 27 Synthetic Procedure and Spectroscopic Data for Compound 9 The title compound 9 (18 mg, 90% as a yellow oil) was prepared from 21 (50 mg) by the general procedure described in ref. 24. [α]D 26 +60.6 (c 0.89, MeOH) {lit.18 [α]D 26 +62.3 (c 1.0, MeOH)}. IR (neat, KBr): νmax = 1106, 1633, 2926, 3449 cm–1. 1H NMR (300 MHz, D2O): δ = 0.95 (t, 3 H, J = 7.2 Hz), 1.32–1.58 (m, 2 H) 1.62–1.95 (m, 2 H), 3.53 (m, 1 H), 3.78 (m, 1 H), 3.88 (dd, 1 H, J = 8.1, 11.9 Hz), 3.99 (dd, 1 H, J = 5.1, 11.9 Hz), 4.11 (dd, 1 H J = 4.0, 9.3 Hz), 4.31 (t, 1 H, J = 3.4 Hz). 13C NMR (125 MHz, D2O): δ = 15.59, 21.84, 34.89, 60.35, 63.00, 64.13, 72.86, 78.00. ESI-HRMS (Orbitrap): m/z calcd for C8H18O3N [M + H]+: 176.12812; found: 176.12805.
  • 28 Synthetic Procedure and Spectroscopic Data for Compound 10 The title compound 10 (22 mg, 89% as a yellow oil) was prepared from 11 (80 mg) by the general procedure described in ref. 25. IR (neat. KBr): νmax = 1078, 1378, 2932, 3380 cm–1. 1H NMR (300 MHz, D2O): δ = 0.85 (t, 3 H, J = 7.3 Hz), 1.26–141 (m, 2 H), 1.55–174 (m, 2 H), 3.42 (m, 1 H), 3.52 (dd, 1 H, J = 5.8, 9.6 Hz), 3.72 (dd, 1 H, J = 5.9, 12.5 Hz), 3.82 (dd, 1 H, J = 3.8, 12.6 Hz), 3.95 (m, 1 H), 4.09 (m, 1 H). 13C NMR (75 MHz, D2O): δ = 13.68, 19.82, 32.58, 59.21, 63.56, 64.93, 71.10, 74.28. ESI-HRMS (Orbitrap): m/z calcd for C8H18O3N [M + H]+: 176.12812; found: 176.12796.