Semin Thromb Hemost 2015; 41(08): 832-837
DOI: 10.1055/s-0035-1564445
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Blood-Induced Arthropathy in Hemophilia: Mechanisms and Heterogeneity

Carl P. Blobel
1   Arthritis and Tissue Degeneration Program, Hospital for Special Surgery, New York, New York
2   Department of Medicine, Weill Cornell Medical College, New York, New York
3   Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medical College, New York, New York
4   Institute for Advanced Study, Technische Universität München, Garching, Germany
,
Coline Haxaire
1   Arthritis and Tissue Degeneration Program, Hospital for Special Surgery, New York, New York
,
George D. Kalliolias
1   Arthritis and Tissue Degeneration Program, Hospital for Special Surgery, New York, New York
2   Department of Medicine, Weill Cornell Medical College, New York, New York
,
Edward DiCarlo
5   Department of Pathology and Laboratory Medicine, Hospital for Special Surgery, New York, New York
,
Jane Salmon
2   Department of Medicine, Weill Cornell Medical College, New York, New York
6   Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, New York
,
Alok Srivastava
7   Department of Hematology, Christian Medical College, Vellore, Tamil Nadu, India
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
09. Oktober 2015 (online)

Abstract

Hemophilia A is an X-linked bleeding disorder that can be largely controlled by treatment with recombinant factor VIII. However, this treatment is only partially effective in preventing hemophilic arthropathy (HA), a debilitating degenerative joint disease that is caused by intra-articular bleeding events. The disease progression of HA has several distinct steps, beginning with hemophilic synovitis (HS), a hyperplasia of the synovial lining coupled with a neovascular response, followed by joint erosion with cartilage destruction and erosion of the underlying bone. The early stages of HA have certain features in common with arthritides such as rheumatoid arthritis (RA), whereas the later degenerative stages of HA have some similarities with osteoarthritis (OA). The main purpose of this review is to explore the similarities between HA with RA and OA and discuss how this information could potentially help understand the pathogenesis of HA and uncover new treatment opportunities.

 
  • References

  • 1 Simpson ML, Valentino LA. Management of joint bleeding in hemophilia. Expert Rev Hematol 2012; 5 (4) 459-468
  • 2 Stephensen D, Rodriguez-Merchan EC. Orthopaedic co-morbidities in the elderly haemophilia population: a review. Haemophilia 2013; 19 (2) 166-173
  • 3 Rodriguez-Merchan EC. Prevention of the musculoskeletal complications of hemophilia. Adv Prev Med 2012; ; doi: 10.1155/2012/201271
  • 4 Aznar JA, Marco A, Jiménez-Yuste V , et al; Spanish Haemophilia Epidemiological Study Working Group. Is on-demand treatment effective in patients with severe haemophilia?. Haemophilia 2012; 18 (5) 738-742
  • 5 Khawaji M, Astermark J, Berntorp E. Lifelong prophylaxis in a large cohort of adult patients with severe haemophilia: a beneficial effect on orthopaedic outcome and quality of life. Eur J Haematol 2012; 88 (4) 329-335
  • 6 Manco-Johnson MJ, Abshire TC, Shapiro AD , et al. Prophylaxis versus episodic treatment to prevent joint disease in boys with severe hemophilia. N Engl J Med 2007; 357 (6) 535-544
  • 7 Jayandharan GR, Srivastava A. The phenotypic heterogeneity of severe hemophilia. Semin Thromb Hemost 2008; 34 (1) 128-141
  • 8 Valentino LA, Hakobyan N, Enockson C , et al. Exploring the biological basis of haemophilic joint disease: experimental studies. Haemophilia 2012; 18 (3) 310-318
  • 9 Valentino LA. Blood-induced joint disease: the pathophysiology of hemophilic arthropathy. J Thromb Haemost 2010; 8 (9) 1895-1902
  • 10 Sen D, Chapla A, Walter N, Daniel V, Srivastava A, Jayandharan GR. Nuclear factor (NF)-κB and its associated pathways are major molecular regulators of blood-induced joint damage in a murine model of hemophilia. J Thromb Haemost 2013; 11 (2) 293-306
  • 11 Forsyth AL, Rivard GE, Valentino LA , et al. Consequences of intra-articular bleeding in haemophilia: science to clinical practice and beyond. Haemophilia 2012; 18 (Suppl. 04) 112-119
  • 12 Haxaire C, Blobel CP. With blood in the joint - what happens next? Could activation of a pro-inflammatory signalling axis leading to iRhom2/TNFα-convertase-dependent release of TNFα contribute to haemophilic arthropathy. Haemophilia 2014; 20 (Suppl. 04) 11-14
  • 13 Nieuwenhuizen L, Roosendaal G, Mastbergen SC , et al. Antiplasmin, but not amiloride, prevents synovitis and cartilage damage following hemarthrosis in hemophilic mice. J Thromb Haemost 2014; 12 (2) 237-245
  • 14 Melchiorre D, Morfini M, Linari S, Zignego AL, Innocenti M, Matucci Cerinic M. Anti-TNF-α therapy prevents the recurrence of joint bleeding in haemophilia and arthritis. Rheumatology (Oxford) 2014; 53 (3) 576-578
  • 15 Narkbunnam N, Sun J, Hu G , et al. IL-6 receptor antagonist as adjunctive therapy with clotting factor replacement to protect against bleeding-induced arthropathy in hemophilia. J Thromb Haemost 2013; 11 (5) 881-893
  • 16 van Meegeren ME, Roosendaal G, Coeleveld K, Nieuwenhuizen L, Mastbergen SC, Lafeber FP. A single intra-articular injection with IL-4 plus IL-10 ameliorates blood-induced cartilage degeneration in haemophilic mice. Br J Haematol 2013; 160 (4) 515-520
  • 17 Astermark J, Dolan G, Hilberg T , et al. Managing haemophilia for life: 4th Haemophilia Global Summit. Haemophilia 2014; 20 (Suppl. 05) 1-20
  • 18 Cross S, Vaidya S, Fotiadis N. Hemophilic arthropathy: a review of imaging and staging. Semin Ultrasound CT MR 2013; 34 (6) 516-524
  • 19 Sierra Aisa C, Lucía Cuesta JF, Rubio Martínez A , et al. Comparison of ultrasound and magnetic resonance imaging for diagnosis and follow-up of joint lesions in patients with haemophilia. Haemophilia 2014; 20 (1) e51-e57
  • 20 Martinoli C, Della Casa Alberighi O, Di Minno G , et al. Development and definition of a simplified scanning procedure and scoring method for Haemophilia Early Arthropathy Detection with Ultrasound (HEAD-US). Thromb Haemost 2013; 109 (6) 1170-1179
  • 21 Melchiorre D, Linari S, Innocenti M , et al. Ultrasound detects joint damage and bleeding in haemophilic arthropathy: a proposal of a score. Haemophilia 2011; 17 (1) 112-117
  • 22 Doria AS. State-of-the-art imaging techniques for the evaluation of haemophilic arthropathy: present and future. Haemophilia 2010; 16 (Suppl. 05) 107-114
  • 23 Lundin B, Manco-Johnson ML, Ignas DM , et al; International Prophylaxis Study Group. An MRI scale for assessment of haemophilic arthropathy from the International Prophylaxis Study Group. Haemophilia 2012; 18 (6) 962-970
  • 24 Doria AS, Keshava SN, Mohanta A , et al. Diagnostic accuracy of ultrasound for assessment of hemophilic arthropathy: MRI correlation. AJR Am J Roentgenol 2015; 204 (3) W336-47
  • 25 Bottini N, Firestein GS. Duality of fibroblast-like synoviocytes in RA: passive responders and imprinted aggressors. Nat Rev Rheumatol 2013; 9 (1) 24-33
  • 26 Bartok B, Firestein GS. Fibroblast-like synoviocytes: key effector cells in rheumatoid arthritis. Immunol Rev 2010; 233 (1) 233-255
  • 27 Firestein GS. Evolving concepts of rheumatoid arthritis. Nature 2003; 423 (6937) 356-361
  • 28 Strand V, Kimberly R, Isaacs JD. Biologic therapies in rheumatology: lessons learned, future directions. Nat Rev Drug Discov 2007; 6 (1) 75-92
  • 29 Feldmann M, Maini SR. Role of cytokines in rheumatoid arthritis: an education in pathophysiology and therapeutics. Immunol Rev 2008; 223: 7-19
  • 30 Taylor PC, Feldmann M. Anti-TNF biologic agents: still the therapy of choice for rheumatoid arthritis. Nat Rev Rheumatol 2009; 5 (10) 578-582
  • 31 Øvlisen K, Kristensen AT, Jensen AL, Tranholm M. IL-1 beta, IL-6, KC and MCP-1 are elevated in synovial fluid from haemophilic mice with experimentally induced haemarthrosis. Haemophilia 2009; 15 (3) 802-810
  • 32 Jansen NW, Roosendaal G, Hooiveld MJ , et al. Interleukin-10 protects against blood-induced joint damage. Br J Haematol 2008; 142 (6) 953-961
  • 33 van Meegeren ME, Roosendaal G, van Veghel K, Mastbergen SC, Lafeber FP. A short time window to profit from protection of blood-induced cartilage damage by IL-4 plus IL-10. Rheumatology (Oxford) 2013; 52 (9) 1563-1571
  • 34 Rodriguez-Merchan EC. Musculoskeletal complications of hemophilia. HSS J 2010; 6 (1) 37-42
  • 35 Lambert T, Auerswald G, Benson G , et al. Joint disease, the hallmark of haemophilia: what issues and challenges remain despite the development of effective therapies?. Thromb Res 2014; 133 (6) 967-971
  • 36 Rodriguez-Merchan EC, De la Corte-Rodriguez H, Jimenez-Yuste V. Radiosynovectomy in haemophilia: long-term results of 500 procedures performed in a 38-year period. Thromb Res 2014; 134 (5) 985-990
  • 37 Thomas S, Gabriel MB, Assi PE , et al; Brazilian Hemophilia Centers. Radioactive synovectomy with Yttrium90 citrate in haemophilic synovitis: Brazilian experience. Haemophilia 2011; 17 (1) e211-e216
  • 38 Hakobyan N, Enockson C, Cole AA, Sumner DR, Valentino LA. Experimental haemophilic arthropathy in a mouse model of a massive haemarthrosis: gross, radiological and histological changes. Haemophilia 2008; 14 (4) 804-809
  • 39 Valentino LA, Hakobyan N. Histological changes in murine haemophilic synovitis: a quantitative grading system to assess blood-induced synovitis. Haemophilia 2006; 12 (6) 654-662
  • 40 Felson DT. Clinical practice. Osteoarthritis of the knee. N Engl J Med 2006; 354 (8) 841-848
  • 41 Fosang AJ, Beier F. Emerging Frontiers in cartilage and chondrocyte biology. Best Pract Res Clin Rheumatol 2011; 25 (6) 751-766
  • 42 Chu CR, Millis MB, Olson SA. Osteoarthritis: From Palliation to Prevention: AOA Critical Issues. J Bone Joint Surg Am 2014; 96 (15) e130
  • 43 Kiapour AM, Murray MM. Basic science of anterior cruciate ligament injury and repair. Bone Joint Res 2014; 3 (2) 20-31
  • 44 Olson SA, Horne P, Furman B , et al. The role of cytokines in posttraumatic arthritis. J Am Acad Orthop Surg 2014; 22 (1) 29-37
  • 45 Glasson SS. In vivo osteoarthritis target validation utilizing genetically-modified mice. Curr Drug Targets 2007; 8 (2) 367-376
  • 46 Glasson SS, Askew R, Sheppard B , et al. Deletion of active ADAMTS5 prevents cartilage degradation in a murine model of osteoarthritis. Nature 2005; 434 (7033) 644-648
  • 47 Glasson SS, Blanchet TJ, Morris EA. The surgical destabilization of the medial meniscus (DMM) model of osteoarthritis in the 129/SvEv mouse. Osteoarthritis Cartilage 2007; 15 (9) 1061-1069
  • 48 Ma HL, Blanchet TJ, Peluso D, Hopkins B, Morris EA, Glasson SS. Osteoarthritis severity is sex dependent in a surgical mouse model. Osteoarthritis Cartilage 2007; 15 (6) 695-700
  • 49 Little CB, Barai A, Burkhardt D , et al. Matrix metalloproteinase 13-deficient mice are resistant to osteoarthritic cartilage erosion but not chondrocyte hypertrophy or osteophyte development. Arthritis Rheum 2009; 60 (12) 3723-3733
  • 50 Stanton H, Rogerson FM, East CJ , et al. ADAMTS5 is the major aggrecanase in mouse cartilage in vivo and in vitro. Nature 2005; 434 (7033) 648-652
  • 51 Troeberg L, Nagase H. Proteases involved in cartilage matrix degradation in osteoarthritis. Biochim Biophys Acta 2012; 1824 (1) 133-145
  • 52 Miller RE, Lu Y, Tortorella MD, Malfait AM. Genetically Engineered Mouse Models Reveal the Importance of Proteases as Osteoarthritis Drug Targets. Curr Rheumatol Rep 2013; 15 (8) 350
  • 53 Bayliss MT, Hutton S, Hayward J, Maciewicz RA. Distribution of aggrecanase (ADAMts 4/5) cleavage products in normal and osteoarthritic human articular cartilage: the influence of age, topography and zone of tissue. Osteoarthritis Cartilage 2001; 9 (6) 553-560
  • 54 Little CB, Fosang AJ. Is cartilage matrix breakdown an appropriate therapeutic target in osteoarthritis—insights from studies of aggrecan and collagen proteolysis?. Curr Drug Targets 2010; 11 (5) 561-575
  • 55 Fosang AJ, Little CB. Drug insight: aggrecanases as therapeutic targets for osteoarthritis. Nat Clin Pract Rheumatol 2008; 4 (8) 420-427
  • 56 Lafeber FP, van Spil WE. Osteoarthritis year 2013 in review: biomarkers; reflecting before moving forward, one step at a time. Osteoarthritis Cartilage 2013; 21 (10) 1452-1464
  • 57 Conaghan PG, Kloppenburg M, Schett G, Bijlsma JW ; EULAR osteoarthritis ad hoc committee. Osteoarthritis research priorities: a report from a EULAR ad hoc expert committee. Ann Rheum Dis 2014; 73 (8) 1442-1445
  • 58 Hunter DJ, Nevitt M, Losina E, Kraus V. Biomarkers for osteoarthritis: current position and steps towards further validation. Best Pract Res Clin Rheumatol 2014; 28 (1) 61-71
  • 59 Lotz M, Martel-Pelletier J, Christiansen C , et al. Value of biomarkers in osteoarthritis: current status and perspectives. Ann Rheum Dis 2013; 72 (11) 1756-1763
  • 60 Jansen NW, Roosendaal G, Lundin B , et al. The combination of the biomarkers urinary C-terminal telopeptide of type II collagen, serum cartilage oligomeric matrix protein, and serum chondroitin sulfate 846 reflects cartilage damage in hemophilic arthropathy. Arthritis Rheum 2009; 60 (1) 290-298
  • 61 van Vulpen LF, van Meegeren ME, Roosendaal G , et al. Biochemical markers of joint tissue damage increase shortly after a joint bleed; an explorative human and canine in vivo study. Osteoarthritis Cartilage 2015; 23 (1) 63-69