Aktuelle Neurologie 2016; 43(04): 249-255
DOI: 10.1055/s-0035-1569275
Übersicht
© Georg Thieme Verlag KG Stuttgart · New York

Schlaf und Schmerz

Sleep and Pain
S. Schuh-Hofer
1   Medizinische Fakultät Mannheim, Lehrstuhl für Neurophysiologie, Mannheim
,
S. Schäfer-Voß
1   Medizinische Fakultät Mannheim, Lehrstuhl für Neurophysiologie, Mannheim
,
R.-D. Treede
1   Medizinische Fakultät Mannheim, Lehrstuhl für Neurophysiologie, Mannheim
› Author Affiliations
Further Information

Publication History

Publication Date:
10 February 2016 (online)

Zusammenfassung

Schlaf, Schlafstörung und Schmerz stehen in einem vielfältigen (patho)physiologischen Zusammenhang. Besonders gut bekannt ist die Rolle von Schlaf im Kontext mit chronobiologischen Schmerzerkrankungen, zu deren prominentesten Vertretern der Clusterkopfschmerz sowie der „Hypnic Headache“ gehören. Schlafstörungen können sich aber auch – wie jüngste experimentelle Studien an Gesunden zeigen – negativ auf Schmerzempfindlichkeit und Spontanschmerz auswirken. Schon eine Nacht Schlafentzug führt zu einer gesteigerten Schmerzempfindlichkeit für mechanische und thermische Reize, nach mehrtägiger Schlafrestriktion klagen selbst Gesunde über Spontanschmerzen. Erste klinische Patientenstudien unterstützen die Hypothese, nach der Schlafstörungen für Schmerzpatienten das Potenzial eines eigenständigen „Aggravationsfaktors“ haben. Dies hat erheblich pathophysiologische Relevanz, da Schlafstörungen – unabhängig von der Schmerzpathogenese – zu den häufigsten Begleitbeschwerden von Schmerzpatienten zählen. Studien zufolge haben schlafmedizinische Maßnahmen durchaus das Potenzial, chronische Schmerzsyndrome positiv zu beeinflussen. Der Beitrag von Schlafstörungen am Schmerzsyndrom kann jedoch stark variieren, weshalb er im klinischen Patientenalltag letztlich individuell erfasst werden muss. Pathophysiologische Erklärungsansätze beruhen derzeit auf 2 Grundbeobachtungen. So legen tierexperimentelle Studien nahe, dass Schlafmangel/Schlafentzug durch hierdurch induzierte Veränderungen in der Neurotransmitter-Balance zu einer funktionellen Störung des endogenen schmerzmodulierenden Systems führt. Ein weiterer pathophysiologischer Ansatz, der bisher jedoch noch wenig erforscht ist, bezieht sich auf die Interaktion zwischen Schlafmangel und Immunsystem. So können die chronobiologisch fein abgestimmten pro- und antiinflammatorischen Immunvorgänge durch chronischen Schlafmangel aus dem Gleichgewicht geraten. Das hieraus resultierende proinflammatorische Übergewicht kann – z. B. in Form einer verstärkten Freisetzung proinflammatorischer/pronozizeptiver Zytokine – negativen Einfluss auf das nozizeptive System ausüben. Die klinische Bedeutung des pathophysiologischen Zusammenhangs zwischen Schlafstörung und Schmerz wird im schmerztherapeutischen Alltag bisher eher unterschätzt. Für die Zukunft wäre es daher wünschenswert, eine standardisierte Schlafdiagnostik und –therapie im schmerztherapeutischen Alltag fest zu implementieren.

Abstract

Sleep, sleep deprivation and pain are closely intertwined. It is well established that sleep plays an important role in chronobiological pain disorders. Cluster and hypnic headaches are prominent examples of pain disorders with circadian rhythmicity. More recently, the impact of disturbed sleep on both spontaneous pain and pain sensitivity has been recognized. Experimental studies have shown that one night of total sleep deprivation can induce generalized, mechanical and thermal pain hypersensitivity. Sleep restriction over several days results in spontaneous pain. Several clinical studies suggest that sleep deprivation/disruption acts as an independent „pain aggravating“ factor. Insomnia in pain patients is of therapeutic relevance since disturbed sleep is one of the most frequently reported complaints of pain patients. Clinical studies have shown that improved sleep (either by cognitive behavioral insomnia therapy or by the use of hypnotics) alleviates the (chronic) pain condition. However, the contribution of disturbed sleep to pain intensity may vary considerably and needs to be determined individually. The mechanism by which disturbed sleep affects nociception is currently unknown. There is some evidence of sleep deprivation causing imbalance of the endogenous pain modulatory system by reinforcing pro-nociceptive whilst attenuating the anti-nociceptive system. The interplay between sleep and the immune system may play an important role. Sleep deprivation induces release of pro-inflammatory cytokines. Due to their pro-nociceptive properties, they may impact on pain sensitivity, resulting in hypersensitivity to evoked pain.

 
  • Literatur

  • 1 Fishbain DA, Cole B, Lewis JE et al. What is the evidence for chronic pain being etiologically associated with the DSM-IV category of sleep disorder due to a general medical condition? A structured evidence-based review. Pain Med 2010; 11: 158-179
  • 2 Rains JC, Poceta JS, Penzien DB. Sleep and headaches. Curr Neuro Neurosci Rep 2008; 8: 167-175
  • 3 Zelman DC, Brandenburg NA, Gore M. Sleep impairment in patients with painful diabetic peripheral neuropathy. Clin J Pain 2006; 22: 681-685
  • 4 Taylor-Gjevre RM, Gjevre JA, Nair B et al. Components of sleep quality and sleep fragmentation in rheumatoid arthritis and osteoarthritis. Musculoskeletal Care 2011; 9: 152-159
  • 5 Alsaadi SM, McAuley JH, Hush JM et al. Prevalence of sleep disturbance in patients with low back pain. Eur Spine J 2011; 20: 737-743
  • 6 van de Water AT, Eadie J, Hurley DA. Investigation of sleep disturbance in chronic low back pain: an age- and gender-matched case-control study over a 7-night period. Man Ther 2011; 16: 550-556
  • 7 Garrett K., Dhruva A, Koetters T et al. Differences in sleep disturbance and fatigue between patients with breast and prostate cancer at the initiation of radiation therapy. J Pain Symptom Manage 2011; 42: 239-250
  • 8 Moldofsky H, Scarisbrick P, England R et al. Musculosketal symptoms and non-REM sleep disturbance in patients with „fibrositis syndrome“ and healthy subjects. Psychosomat Med 1975; 37: 341-351
  • 9 Moldofsky H, Scarisbrick P. Induction of neurasthenic musculoskeletal pain syndrome by selective sleep stage deprivation. Psychosomat Med 1976; 38: 35-44
  • 10 Irwin MR, Olmstead R, Carrillo C et al. Sleep loss exacerbates fatigue, depression, and pain in rheumatoid arthritis. Sleep 2012; 35: 537-543
  • 11 Haack M, Scott-Sutherland J, Santangelo G et al. Pain sensitivity and modulation in primary insomnia. Eur J Pain 2012; 16: 522-533
  • 12 Haack M, Lee E, Cohen D et al. Activation of the prostaglandin system in response to sleep loss in healthy humans: potential mediator of increased spontaneous pain. Pain 2009; 145: 136-114
  • 13 Smith MT, Edwards RR, McCann DU et al. The effects of sleep deprivation on pain inhibition and spontaneous pain in women. Sleep 2007; 30: 494-505
  • 14 Karmann AJ, Kundermann B, Lautenbacher S. Sleep deprivation and pain: a review of the newest literature. Schmerz 2014; 28: 141-146
  • 15 Schuh-Hofer S, Wodarski R, Pfau DB et al. One night of total sleep deprivation promotes a state of generalized hyperalgesia: a surrogate pain model to study the relationship of insomnia and pain. Pain 2013; 154: 1613-1621
  • 16 Barloese M, Lund N, Petersen A et al. Sleep and chronobiology in cluster headache. Cephalalgia 2015; 35: 969-978
  • 17 Zaremba S, Holle D, Wessendorf TE et al. Cluster headache shows no association with rapid eye movement sleep. Cephalalgia 2012; 32: 289-296
  • 18 Barloese MC, Jennum PJ, Lund NT et al. Sleep in cluster headache – beyond a temporal rapid eye movement relationship?. Eur J Neurol 2015; 22: e656-e640
  • 19 Terzaghi M, Ghiotto N, Sances G et al. Episodic cluster headache: NREM prevalence of nocturnal attacks. Time to look beyond macrostructural analysis?. Headache 2010; 50: 1050-1054
  • 20 Evers S, Barth B, Frese A et al. Sleep apnea in patients with cluster headache: a case-control study. Cephalalgia 2014; 34: 828-832
  • 21 Graff-Radford SB, Teruel A. Cluster headache and obstructive sleep apnea: are they related disorders?. Curr Pain Headache Rep 2009; 13: 160-163
  • 22 Nath Zallek S, Chervin R. Improvement in cluster headache after treatment for obstructive sleep apnea. Sleep Med 2000; 1: 135-138
  • 23 Kudrow L, McGinty DJ, Phillips ER et al. Sleep apnea in cluster headache. Cephalalgia 1984; 4: 33-38
  • 24 Holle D, Obermann M. Cluster headache and the hypothalamus: causal relationship or epiphenomenon?. Expert Rev Neurother 2011; 11: 1255-1263
  • 25 Pringsheim T. Cluster headache: evidence for a disorder of circadian rhythm and hypothalamic function. Can J Neurol Sci 2002; 29: 33-40
  • 26 Leone M, Bussone G. A review of hormonal findings in cluster headache. Evidence for hypothalamic involvement. Cephalalgia 1993; 13: 309-317
  • 27 May A. The window into headache research : what have we learned from functional and structural neuroimaging. Schmerz 2010; 24: 130-136
  • 28 Iacovelli E, Coppola G, Tinelli E et al. Neuroimaging in cluster headache and other trigeminal autonomic cephalalgias. J Headache Pain 2012; 13: 11-20
  • 29 Pedersen JL, Barloese M, Jensen RH. Neurostimulation in cluster headache: a review of current progress. Cephalalgia 2013; 33: 1179-1193
  • 30 Holland PR, Goadsby PJ. Cluster headache, Hypothalamus and Orexin. Current pain and Headache Reports 2009; 13: 147-154
  • 31 Weller CM, Wilbrink LA, Houwing-Duistermaat JJ et al. Cluster headache and the hypocretin receptor 2 reconsidered: a genetic assication study and meta-analysis. Cephalalgia 2015; 35: 741-747
  • 32 Rainero I, Rubino E, Gallone S et al Evidence for an association between migraine and the hypocretin receptor 1 gene. J Headache Pain 2011; 12: 193-199
  • 33 Pinessi L, Binello E, De Martino P et al The 1246G-->A polymorphism of the HCRTR2 gene is not associated with migraine. Cephalalgia 2007; 27: 945-949
  • 34 Schürks M, Limmroth V, Geissler I et al. Association between migraine and the G1246A polymorphism in the hypocretin receptor 2 gene. Headache 2007; 47: 1195-1199
  • 35 Holle D, Naegel S, Obermann M. Hypnic Headache. Cephalalgia 2013; 33: 1349-1357
  • 36 Holle D, Naegel S, Obermann M. Pathophysiology of hypnic headache. Cepahalalgia 2014; 34: 806-812
  • 37 Kelman L, Rains JC. Headache and sleep: examination of sleep patterns and complaints in a large clinical sample of migraineurs. Headache 2005; 45: 904-910
  • 38 Della Marca G, Vollono C, Rubino M et al. Dysfunction of arousal systems in sleep-related migraine without aura. Cephalalgia 2006; 26: 857-864
  • 39 Göder R, Fritzer G, Kapsokalyvas A et al. Polysomnographic findings in nights preceding a migraine attack. Cephalalgia 2001; 21: 31-37
  • 40 Houle TT, Rains JC, Penzien DB et al. Biobehavioral precipitants of headache: time- series analysis of stress and sleep on headache activity. Headache 2004; 44: 533-534
  • 41 Maizels M, Burchette R. Somatic symptoms in headache patients: the influence of headache diagnosis, frequency and comorbidity. Headache 2004; 44: 983-993
  • 42 Calhoun AH, Ford S. Behavioral sleep modification may revert transformed migraine to episodic migraine. headache 2007; 47: 1178-1183
  • 43 Rains JC. Tension-type headache and sleep. Curr Neurol Neursci Rep 2015; 15: 520-525
  • 44 Lyngberg AC, Rasmussen BK, Jørgensen T et al. Prognosis of migraine and tension-type headache: a population-based follow-up study. Neurology 2005; 65: 580-585
  • 45 Rhode AM, Hösing VG, Happe S et al. Comorbidity of migraine and restless-legs syndrome-a case-control study. Cephalalgia 2007; 27: 1255-1260
  • 46 Gozubatik-Celik G, Benbir G, Tan F et al. The prevalence of migraine in restless legs syndrome. Headache 2014; 54: 872-877
  • 47 Chen PK, Fuh JL, Chen SP et al. Association between restless legs syndrome and migraine. J Neurol Neurosurg Psychiatry 2010; 81: 524-528
  • 48 Stiasny-Kolster K, Magerl W, Oertel WH et al. Static mechanical hyperalgesia without dynamic tactile allodynia in patients with restless legs syndrome. Brain 2004; 127: 773-782
  • 49 Bachmann CG, Rolke R, Scheidt U et al. Thermal hypoaesthesia differentiates secondary restless legs syndrome associated with small fibre neuropathy from primary restless legs syndrome. Brain 2010; 133: 762-770
  • 50 Stiasny-Kolster K, Pfau DB, Oertel WH et al. Hyperalgesia and functional sensory loss in restless legs syndrome. Pain 2013; 154: 1457-1463
  • 51 Chen PK, Fuh JL, Wang SH. Bidirectional triggering association between migraine and restless legs syndrome: a diary study. Cephalalgia 2015; [Epub ahead of print]
  • 52 Borbély AA, Steigrad P, Tobler I. Effect of sleep deprivation on brain serotonin in the rat. Behav Brain Res 1980; 1: 205-210
  • 53 Farooqui SM, Brock JW, Zhou J. Changes in monoamines and their metabolite concentrations in REM sleep-deprived rat forebrain nuclei. Pharmacol Biochem Behav 1996; 54: 385-391
  • 54 Tomim DH, Pontarolla FM, Bertolini JF et al. The pronociceptive effect of paradoxical sleep deprivation in rats: Evidence for a role of descending pain modulation mechanisms. Mol Neurobiol 2015; [Epub ahead of print]
  • 55 Nascimento DC, Andersen ML, Hipolide DC et al. Pain hypersensitivity induced by paradoxical sleep deprivation is not due to altered binding to brain mu-opioid receptors. Behav Brain Res 2007; 178: 216-220
  • 56 Fadda P, Tortorella A, Fratta W. Sleep deprivation decreases mu and delta opioid receptor binding in the rat limbic system. Neurosci Lett 1991; 129: 315-317
  • 57 Sivertsen B, Lallukka T, Petrie K et al. Sleep and pain sensitivity in adults. Pain 2015; 156: 1433-1439
  • 58 Chennaoui M, Sauvet F, Drogou C et al. Effect of one night of sleep loss on changes in tumor necrosis factor alpha (TNF-alpha) levels in healthy men. Cytokine 2011; 56: 318-324
  • 59 Irwin MR, Olmstead R, Carroll JE. Sleep disturbance, sleep duration, and inflammation: a systematic review and meta-analysis of cohort studies and experimental sleep deprivation. Biol Psychiatry 2015; [Epub ahead of print]
  • 60 Lange T, Dimitrov S, Born J. Effects of sleep and circadian rhythm on the human immune system. Ann N Y Acad Sci 2010; 48-59
  • 61 Haack M, Sanchez E, Mullington JM. Elevated inflammatory markers in response to prolonged sleep restriction are associated with increased pain experience in healthy volunteers. Sleep 2007; 30: 1145-1152
  • 62 Cutolo M. Chronobiology and the treatment of rheumatoid arthritis. Curr Opin Rheumatol 2012; 24: 312-318
  • 63 Wodarski R, Schuh-Hofer S, Yurek DA et al. Development and pharmacological characterization of a model of sleep disruption-induced hypersensitivity in the rat. Eur J Pain 2015; 19: 554-566
  • 64 Vitiello MV, Rybarczyk B, Von Korff M et al. Cognitive behavioral therapy for insomnia improves sleep and decreases pain in older adults with co-morbid insomnia and osteoarthritis. J Clin Sleep Med 2009; 5: 355-362
  • 65 Smith MT, Finan PH, Buenaver LF et al. Cognitive-behavioral therapy for insomnia in knee osteoarthritis: a randomized, double-blind, active placebo-controlled clinical trial. Arthritis Rheumatol 2015; 67: 1221-1233
  • 66 Rybarczyk B, Stepanski E, Fogg L et al. A placebo-controlled test of cognitive-behavioral therapy for comorbid insomnia in older adults. J Consult Clin Psychol 2005; 73: 1164-1174
  • 67 Edinger JD, Wohlgemuth WK, Krystal AD et al. Behavioral insomnia therapy for fibromyalgia patients: a randomized clinical trial. Arch Intern Med 2005; 165: 2527-2535
  • 68 Currie SR, Wilson KG, Pontefract AJ et al. Cognitive-behavioral treatment of insomnia secondary to chronic pain. J Consult Clin Psychol 2000; 68: 407-416
  • 69 Jungquist CR, O’Brien C, Matteson-Rusby S et al. The efficacy of cognitive-behavioral therapy for insomnia in patients with chronic pain. Sleep Med 2010; 11: 302-309
  • 70 Finan PH, Buenaver LF, Coryell VT. Cognitive-behavioral therapy for comorbid insomnia and chronic pain. Sleep Med Clin 2014; 9: 261-274
  • 71 Roth T, Price JM, Amato DA et al. The Effect of Eszopiclone in Patients With Insomnia and Coexisting Rheumatoid Arthritis: A Pilot Study. Prim Care Companion J Clin Psychiatry 2009; 11: 292-301
  • 72 Goforth HW, Preud’homme XA, Krystal AD. A randomized, double-blind, placebo-controlled trial of eszopiclone for the treatment of insomnia in patients with chronic low back pain. Sleep 2014; 37: 1053-1060
  • 73 Walsh JK, Muehlbach MJ, Lauter SA et al. Effects of triazolam on sleep, daytime sleepiness, and morning stiffness in patients with rheumatoid arthritis. J Rheumatol 1996; 23: 245-252
  • 74 Grönblad M, Nykänen J, Konttinen Y et al. Effect of zopiclone on sleep quality, morning stiffness, widespread tenderness and pain and general discomfort in primary fibromyalgia patients. A double-blind randomized trial. Clin Rheumatol 1993; 12: 186-191
  • 75 Drewes AM, Bjerregård K, Taagholt SJ et al. Zopiclone as night medication in rheumatoid arthritis. Scand J Rheumatol 1998; 27: 180-187
  • 76 Moldofsky H, Lue FA, Mously C et al. The effect of zolpidem in patients with fibromyalgia: a dose ranging, double blind, placebo controlled, modified crossover study. J Rheumatol 1996; 23: 529-533
  • 77 Tashjian RZ, Banerjee R, Bradley MP et al. Zolpidem reduces postoperative pain, fatigue, and narcotic consumption following knee arthroscopy: a prospective randomized placebo-controlled double-blinded study. J Knee Surg 2006; 19: 105-111
  • 78 Vinik A, Emir B, Parsons B et al. Prediction of pregabalin-mediated pain response by severity of sleep disturbance in patients with painful diabetic neuropathy and post-herpetic neuralgia. Pain Med 2014; 15: 661-670