Semin Thromb Hemost 2016; 42(04): 333-343
DOI: 10.1055/s-0036-1571342
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

What Is the Biological and Clinical Relevance of Fibrin?

Rustem I. Litvinov
1   Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
,
John W. Weisel
1   Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
› Author Affiliations
Further Information

Publication History

Publication Date:
07 April 2016 (online)

Abstract

As our knowledge of the structure and functions of fibrinogen and fibrin has increased tremendously, several key findings have given some people a superficial impression that the biological and clinical significance of these clotting proteins may be less than earlier thought. Most strikingly, studies of fibrinogen knockout mice demonstrated that many of these mice survive to weaning and beyond, suggesting that fibrin(ogen) may not be entirely necessary. Humans with afibrinogenemia also survive. Furthermore, in recent years, the major emphasis in the treatment of arterial thrombosis has been on inhibition of platelets, rather than fibrin. In contrast to the initially apparent conclusions from these results, it has become increasingly clear that fibrin is essential for hemostasis; is a key factor in thrombosis; and plays an important biological role in infection, inflammation, immunology, and wound healing. In addition, fibrinogen replacement therapy has become a preferred, major treatment for severe bleeding in trauma and surgery. Finally, fibrin is a unique biomaterial and is used as a sealant or glue, a matrix for cells, a scaffold for tissue engineering, and a carrier and/or a vector for targeted drug delivery.

 
  • References

  • 1 Forrester JM. Malpighi's De polypo cordis: an annotated translation. Med Hist 1995; 39 (4) 477-492
  • 2 Weisel JW, Litvinov RI. Mechanisms of fibrin polymerization and clinical implications. Blood 2013; 121 (10) 1712-1719
  • 3 Brown AE, Litvinov RI, Discher DE, Purohit PK, Weisel JW. Multiscale mechanics of fibrin polymer: gel stretching with protein unfolding and loss of water. Science 2009; 325 (5941) 741-744
  • 4 Kim OV, Litvinov RI, Weisel JW, Alber MS. Structural basis for the nonlinear mechanics of fibrin networks under compression. Biomaterials 2014; 35 (25) 6739-6749
  • 5 Suh TT, Holmbäck K, Jensen NJ , et al. Resolution of spontaneous bleeding events but failure of pregnancy in fibrinogen-deficient mice. Genes Dev 1995; 9 (16) 2020-2033
  • 6 de Moerloose P, Casini A, Neerman-Arbez M. Congenital fibrinogen disorders: an update. Semin Thromb Hemost 2013; 39 (6) 585-595
  • 7 Stalker TJ, Traxler EA, Wu J , et al. Hierarchical organization in the hemostatic response and its relationship to the platelet-signaling network. Blood 2013; 121 (10) 1875-1885
  • 8 Welsh JD, Muthard RW, Stalker TJ, Taliaferro J, Diamond SL, Brass LF. More than just red cells: how do hemostatic thrombi prevent the loss of plasma-borne molecules?. J Thromb Haemost 2015; 13: 174-174
  • 9 Prasad JM, Gorkun OV, Raghu H , et al. Mice expressing a mutant form of fibrinogen that cannot support fibrin formation exhibit compromised antimicrobial host defense. Blood 2015; 126 (17) 2047-2058
  • 10 Bornikova L, Peyvandi F, Allen G, Bernstein J, Manco-Johnson MJ. Fibrinogen replacement therapy for congenital fibrinogen deficiency. J Thromb Haemost 2011; 9 (9) 1687-1704
  • 11 Casini A, de Moerloose P, Neerman-Arbez M. Clinical features and management of congenital fibrinogen deficiencies. Semin Thromb Hemost 2016; 42 (4) 356-365
  • 12 Mosesson MW. Update on antithrombin I (fibrin). Thromb Haemost 2007; 98 (1) 105-108
  • 13 Stalker TJ, Welsh JD, Brass LF. Shaping the platelet response to vascular injury. Curr Opin Hematol 2014; 21 (5) 410-417
  • 14 Muszbek L, Katona E. Diagnosis and management of congenital and acquired factor XIII deficiencies. Semin Thromb Hemost 2016; 42 (4) 429-439
  • 15 Lassila R. Clinical use of FXIII concentrates. Semin Thromb Hemost 2016; 42 (4) 440-444
  • 16 Schroeder V, Kohler HP. Factor XIII: structure and function. Semin Thromb Hemost 2016; 42 (4) 422-428
  • 17 Jarvis GE, Atkinson BT, Frampton J, Watson SP. Thrombin-induced conversion of fibrinogen to fibrin results in rapid platelet trapping which is not dependent on platelet activation or GPIb. Br J Pharmacol 2003; 138 (4) 574-583
  • 18 Litvinov RI, Farrell DH, Weisel JW, Bennett JS. The platelet integrin αIIbβ3 differentially interacts with fibrin versus fibrinogen. (e-pub ahead of print) J Biol Chem 2016; doi: pii: jbc.M115.706861
  • 19 Collet JP, Montalescot G, Lesty C, Weisel JW. A structural and dynamic investigation of the facilitating effect of glycoprotein IIb/IIIa inhibitors in dissolving platelet-rich clots. Circ Res 2002; 90 (4) 428-434
  • 20 Carr Jr ME. Development of platelet contractile force as a research and clinical measure of platelet function. Cell Biochem Biophys 2003; 38 (1) 55-78
  • 21 Lam WA, Chaudhuri O, Crow A , et al. Mechanics and contraction dynamics of single platelets and implications for clot stiffening. Nat Mater 2011; 10 (1) 61-66
  • 22 Bennett JS. Platelet-fibrinogen interactions. Ann N Y Acad Sci 2001; 936: 340-354
  • 23 Ehrlicher A, Hartwig JH. Cell mechanics: Contracting to stiffness. Nat Mater 2011; 10 (1) 12-13
  • 24 Wufsus AR, Rana K, Brown A, Dorgan JR, Liberatore MW, Neeves KB. Elastic behavior and platelet retraction in low- and high-density fibrin gels. Biophys J 2015; 108 (1) 173-183
  • 25 Kasahara K, Kaneda M, Miki T , et al. Clot retraction is mediated by factor XIII-dependent fibrin-αIIbβ3-myosin axis in platelet sphingomyelin-rich membrane rafts. Blood 2013; 122 (19) 3340-3348
  • 26 Cines DB, Lebedeva T, Nagaswami C , et al. Clot contraction: compression of erythrocytes into tightly packed polyhedra and redistribution of platelets and fibrin. Blood 2014; 123 (10) 1596-1603
  • 27 Ząbczyk M, Sadowski M, Zalewski J, Undas A. Polyhedrocytes in intracoronary thrombi from patients with ST-elevation myocardial infarction. Int J Cardiol 2015; 179: 186-187
  • 28 Skewis LR, Lebedeva T, Papkov V , et al. T2 magnetic resonance: a diagnostic platform for studying integrated hemostasis in whole blood—proof of concept. Clin Chem 2014; 60 (9) 1174-1182
  • 29 Eckly A, Strassel C, Freund M , et al. Abnormal megakaryocyte morphology and proplatelet formation in mice with megakaryocyte-restricted MYH9 inactivation. Blood 2009; 113 (14) 3182-3189
  • 30 Kunishima S, Saito H. Advances in the understanding of MYH9 disorders. Curr Opin Hematol 2010; 17 (5) 405-410
  • 31 Léon C, Eckly A, Hechler B , et al. Megakaryocyte-restricted MYH9 inactivation dramatically affects hemostasis while preserving platelet aggregation and secretion. Blood 2007; 110 (9) 3183-3191
  • 32 Ono A, Westein E, Hsiao S , et al. Identification of a fibrin-independent platelet contractile mechanism regulating primary hemostasis and thrombus growth. Blood 2008; 112 (1) 90-99
  • 33 Zhang Y, Conti MA, Malide D , et al. Mouse models of MYH9-related disease: mutations in nonmuscle myosin II-A. Blood 2012; 119 (1) 238-250
  • 34 Law DA, DeGuzman FR, Heiser P, Ministri-Madrid K, Killeen N, Phillips DR. Integrin cytoplasmic tyrosine motif is required for outside-in alphaIIbbeta3 signalling and platelet function. Nature 1999; 401 (6755) 808-811
  • 35 Stalker TJ, Welsh JD, Tomaiuolo M , et al. A systems approach to hemostasis: 3. Thrombus consolidation regulates intrathrombus solute transport and local thrombin activity. Blood 2014; 124 (11) 1824-1831
  • 36 Kasahara K, Souri M, Kaneda M, Miki T, Yamamoto N, Ichinose A. Impaired clot retraction in factor XIII A subunit-deficient mice. Blood 2010; 115 (6) 1277-1279
  • 37 Aleman MM, Byrnes JR, Wang JG , et al. Factor XIII activity mediates red blood cell retention in venous thrombi. J Clin Invest 2014; 124 (8) 3590-3600
  • 38 Byrnes JR, Duval C, Wang Y , et al. Factor XIIIa-dependent retention of red blood cells in clots is mediated by fibrin α-chain crosslinking. Blood 2015; 126 (16) 1940-1948
  • 39 Byrnes JR, Wolberg AS. Newly-recognized roles of factor XIII in thrombosis. Semin Thromb Hemost 2016; 42 (4) 445-454
  • 40 Muthard RW, Diamond SL. Blood clots are rapidly assembled hemodynamic sensors: flow arrest triggers intraluminal thrombus contraction. Arterioscler Thromb Vasc Biol 2012; 32 (12) 2938-2945
  • 41 Casini A, Blondon M, Lebreton A , et al. Natural history of patients with congenital dysfibrinogenemia. Blood 2015; 125 (3) 553-561
  • 42 Casini A, Neerman-Arbez M, Ariëns RA, de Moerloose P. Dysfibrinogenemia: from molecular anomalies to clinical manifestations and management. J Thromb Haemost 2015; 13 (6) 909-919
  • 43 Neerman-Arbez M, de Moerloose P, Casini A. Laboratory and genetic investigation of mutations accounting for congenital fibrinogen disorders. Semin Thromb Hemost 2016; 42 (4) 344-355
  • 44 Pluta A, Gutkowski K, Hartleb M. Coagulopathy in liver diseases. Adv Med Sci 2010; 55 (1) 16-21
  • 45 Kopec AK, Luyendyk JP. Role of fibrin(ogen) in progression of liver disease: guilt by association?. Semin Thromb Hemost 2016; 42 (4) 397-407
  • 46 Martinez J, Palascak JE, Kwasniak D. Abnormal sialic acid content of the dysfibrinogenemia associated with liver disease. J Clin Invest 1978; 61 (2) 535-538
  • 47 Lisman T, Ariëns RAS. Alterations in fibrin structure in patients with liver diseases. Semin Thromb Hemost 2016; 42 (4) 389-396
  • 48 Lisman T, Porte RJ. Rebalanced hemostasis in patients with liver disease: evidence and clinical consequences. Blood 2010; 116 (6) 878-885
  • 49 Panzer S, Thaler E. An acquired cryoglobulinemia which inhibits fibrin polymerization in a patient with IgG kappa myeloma. Haemostasis 1993; 23 (1) 69-76
  • 50 Dear A, Brennan SO, Sheat MJ, Faed JM, George PM. Acquired dysfibrinogenemia caused by monoclonal production of immunoglobulin lambda light chain. Haematologica 2007; 92 (11) e111-e117
  • 51 Hanss M, Biot F. A database for human fibrinogen variants. Ann N Y Acad Sci 2001; 936: 89-90
  • 52 Macrae FL, Domingues MM, Casini A, Ariëns RAS. The (patho)physiology of fibrinogen. Semin Thromb Hemost 2016; 42 (4) 344-355
  • 53 de Moerloose P, Neerman-Arbez M. Congenital fibrinogen disorders. Semin Thromb Hemost 2009; 35 (4) 356-366
  • 54 Fries D, Martini WZ. Role of fibrinogen in trauma-induced coagulopathy. Br J Anaesth 2010; 105 (2) 116-121
  • 55 Fries D. The early use of fibrinogen, prothrombin complex concentrate, and recombinant-activated factor VIIa in massive bleeding. Transfusion 2013; 53 (Suppl. 01) 91S-95S
  • 56 Martini J, Maisch S, Pilshofer L, Streif W, Martini W, Fries D. Fibrinogen concentrate in dilutional coagulopathy: a dose study in pigs. Transfusion 2014; 54 (1) 149-157
  • 57 Fries D, Innerhofer P, Schobersberger W. Time for changing coagulation management in trauma-related massive bleeding. Curr Opin Anaesthesiol 2009; 22 (2) 267-274
  • 58 Haas T, Fries D, Velik-Salchner C, Reif C, Klingler A, Innerhofer P. The in vitro effects of fibrinogen concentrate, factor XIII and fresh frozen plasma on impaired clot formation after 60% dilution. Anesth Analg 2008; 106 (5) 1360-1365
  • 59 Innerhofer P, Westermann I, Tauber H , et al. The exclusive use of coagulation factor concentrates enables reversal of coagulopathy and decreases transfusion rates in patients with major blunt trauma. Injury 2013; 44 (2) 209-216
  • 60 Martini J, Cabrales P, Fries D, Intaglietta M, Tsai AG. Effects of fibrinogen concentrate after shock/resuscitation: a comparison between in vivo microvascular clot formation and thromboelastometry. Crit Care Med 2013; 41 (11) e301-e308
  • 61 Samama CM. Fibrinogen concentrates for acquired fibrinogen deficiencies?. Semin Thromb Hemost 2016; 42 (4) 375-380
  • 62 Velik-Salchner C, Haas T, Innerhofer P , et al. The effect of fibrinogen concentrate on thrombocytopenia. J Thromb Haemost 2007; 5 (5) 1019-1025
  • 63 Gazzeri R, Fiore C, Galarza M. Role of EVICEL fibrin sealant to assist hemostasis in cranial and spinal epidural space: a neurosurgical clinical study. Surg Technol Int 2015; 26: 364-369
  • 64 Scognamiglio F, Travan A, Rustighi I , et al. Adhesive and sealant interfaces for general surgery applications. J Biomed Mater Res B Appl Biomater 2015;
  • 65 Silvain J, Collet JP, Nagaswami C , et al. Composition of coronary thrombus in acute myocardial infarction. J Am Coll Cardiol 2011; 57 (12) 1359-1367
  • 66 Liebeskind DS, Sanossian N, Yong WH , et al. CT and MRI early vessel signs reflect clot composition in acute stroke. Stroke 2011; 42 (5) 1237-1243
  • 67 Collet JP, Allali Y, Lesty C , et al. Altered fibrin architecture is associated with hypofibrinolysis and premature coronary atherothrombosis. Arterioscler Thromb Vasc Biol 2006; 26 (11) 2567-2573
  • 68 Undas A, Wiek I, Stêpien E, Zmudka K, Tracz W. Hyperglycemia is associated with enhanced thrombin formation, platelet activation, and fibrin clot resistance to lysis in patients with acute coronary syndrome. Diabetes Care 2008; 31 (8) 1590-1595
  • 69 Mills JD, Ariëns RA, Mansfield MW, Grant PJ. Altered fibrin clot structure in the healthy relatives of patients with premature coronary artery disease. Circulation 2002; 106 (15) 1938-1942
  • 70 Undas A, Podolec P, Zawilska K , et al. Altered fibrin clot structure/function in patients with cryptogenic ischemic stroke. Stroke 2009; 40 (4) 1499-1501
  • 71 Undas A, Slowik A, Wolkow P, Szczudlik A, Tracz W. Fibrin clot properties in acute ischemic stroke: relation to neurological deficit. Thromb Res 2010; 125 (4) 357-361
  • 72 Bhasin N, Ariëns RA, West RM, Parry DJ, Grant PJ, Scott DJ. Altered fibrin clot structure and function in the healthy first-degree relatives of subjects with intermittent claudication. J Vasc Surg 2008; 48 (6) 1497-1503 , 1503.e1
  • 73 Undas A, Zawilska K, Ciesla-Dul M , et al. Altered fibrin clot structure/function in patients with idiopathic venous thromboembolism and in their relatives. Blood 2009; 114 (19) 4272-4278
  • 74 Undas A. How to assess fibrinogen levels and fibrin clot in clinical practice. Semin Thromb Hemost 2016; 42 (4) 381-388
  • 75 Ciesienski KL, Yang Y, Ay I , et al. Fibrin-targeted PET probes for the detection of thrombi. Mol Pharm 2013; 10 (3) 1100-1110
  • 76 Nair SA, Kolodziej AF, Bhole G, Greenfield MT, McMurry TJ, Caravan P. Monovalent and bivalent fibrin-specific MRI contrast agents for detection of thrombus. Angew Chem Int Ed Engl 2008; 47 (26) 4918-4921
  • 77 Kolodziej AF, Nair SA, Graham P , et al. Fibrin specific peptides derived by phage display: characterization of peptides and conjugates for imaging. Bioconjug Chem 2012; 23 (3) 548-556
  • 78 Overoye-Chan K, Koerner S, Looby RJ , et al. EP-2104R: a fibrin-specific gadolinium-Based MRI contrast agent for detection of thrombus. J Am Chem Soc 2008; 130 (18) 6025-6039
  • 79 Levi M, van der Poll T. A short contemporary history of disseminated intravascular coagulation. Semin Thromb Hemost 2014; 40 (8) 874-880
  • 80 Semeraro N, Ammollo CT, Semeraro F, Colucci M. Sepsis, thrombosis and organ dysfunction. Thromb Res 2012; 129 (3) 290-295
  • 81 Cotovio M, Monreal L, Armengou L, Prada J, Almeida JM, Segura D. Fibrin deposits and organ failure in newborn foals with severe septicemia. J Vet Intern Med 2008; 22 (6) 1403-1410
  • 82 Hamano A, Tanaka S, Takeda Y, Umeda M, Sakata Y. A novel monoclonal antibody to fibrin monomer and soluble fibrin for the detection of soluble fibrin in plasma. Clin Chim Acta 2002; 318 (1–2) 25-32
  • 83 Misaki T, Kitajima I, Kabata T , et al. Changes of the soluble fibrin monomer complex level during the perioperative period of hip replacement surgery. J Orthop Sci 2008; 13 (5) 419-424
  • 84 Ieko M, Naito S, Yoshida M , et al. Plasma soluble fibrin monomer complex as a marker of coronary thrombotic events in patients with acute myocardial infarction. Tohoku J Exp Med 2009; 219 (1) 25-31
  • 85 Bonk R, Trowbridge C, Stammers A , et al. Soluble fibrin monomer complex and cardiopulmonary bypass. J Extra Corpor Technol 2009; 41 (3) 157-160
  • 86 Kabrhel C, Mark Courtney D, Camargo Jr CA , et al. Factors associated with positive D-dimer results in patients evaluated for pulmonary embolism. Acad Emerg Med 2010; 17 (6) 589-597
  • 87 Wells PS, Anderson DR, Rodger M , et al. Evaluation of D-dimer in the diagnosis of suspected deep-vein thrombosis. N Engl J Med 2003; 349 (13) 1227-1235
  • 88 Bates SM. D-dimer assays in diagnosis and management of thrombotic and bleeding disorders. Semin Thromb Hemost 2012; 38 (7) 673-682
  • 89 Ko Y-P, Flick MJ. Fibrinogen is at the interface of host defense and pathogen virulence in Staphylococcus aureus infection. Semin Thromb Hemost 2016; 42 (4) 408-421
  • 90 Flick MJ, Du X, Witte DP , et al. Leukocyte engagement of fibrin(ogen) via the integrin receptor alphaMbeta2/Mac-1 is critical for host inflammatory response in vivo. J Clin Invest 2004; 113 (11) 1596-1606
  • 91 Flick MJ, LaJeunesse CM, Talmage KE , et al. Fibrin(ogen) exacerbates inflammatory joint disease through a mechanism linked to the integrin alphaMbeta2 binding motif. J Clin Invest 2007; 117 (11) 3224-3235
  • 92 Drew AF, Liu H, Davidson JM, Daugherty CC, Degen JL. Wound-healing defects in mice lacking fibrinogen. Blood 2001; 97 (12) 3691-3698
  • 93 Riopel M, Trinder M, Wang R. Fibrin, a scaffold material for islet transplantation and pancreatic endocrine tissue engineering. Tissue Eng Part B Rev 2015; 21 (1) 34-44
  • 94 Davis ME, Hsieh PC, Grodzinsky AJ, Lee RT. Custom design of the cardiac microenvironment with biomaterials. Circ Res 2005; 97 (1) 8-15
  • 95 Allen P, Melero-Martin J, Bischoff J. Type I collagen, fibrin and PuraMatrix matrices provide permissive environments for human endothelial and mesenchymal progenitor cells to form neovascular networks. J Tissue Eng Regen Med 2011; 5 (4) e74-e86
  • 96 Martineau L, Doillon CJ. Angiogenic response of endothelial cells seeded dispersed versus on beads in fibrin gels. Angiogenesis 2007; 10 (4) 269-277
  • 97 Itosaka H, Kuroda S, Shichinohe H , et al. Fibrin matrix provides a suitable scaffold for bone marrow stromal cells transplanted into injured spinal cord: a novel material for CNS tissue engineering. Neuropathology 2009; 29 (3) 248-257
  • 98 Bensaïd W, Triffitt JT, Blanchat C, Oudina K, Sedel L, Petite H. A biodegradable fibrin scaffold for mesenchymal stem cell transplantation. Biomaterials 2003; 24 (14) 2497-2502
  • 99 Ahmad E, Fatima MT, Hoque M, Owais M, Saleemuddin M. Fibrin matrices: The versatile therapeutic delivery systems. Int J Biol Macromol 2015; 81: 121-136
  • 100 Gonçalves NR, Whelan R, Foxe JJ, Lalor EC. Towards obtaining spatiotemporally precise responses to continuous sensory stimuli in humans: a general linear modeling approach to EEG. Neuroimage 2014; 97: 196-205
  • 101 Piechocka IK, Bacabac RG, Potters M, Mackintosh FC, Koenderink GH. Structural hierarchy governs fibrin gel mechanics. Biophys J 2010; 98 (10) 2281-2289
  • 102 Ariëns RA, Lai TS, Weisel JW, Greenberg CS, Grant PJ. Role of factor XIII in fibrin clot formation and effects of genetic polymorphisms. Blood 2002; 100 (3) 743-754
  • 103 Kurniawan NA, Grimbergen J, Koopman J, Koenderink GH. Factor XIII stiffens fibrin clots by causing fiber compaction. J Thromb Haemost 2014; 12 (10) 1687-1696
  • 104 Shevchenko RV, James SL, James SE. A review of tissue-engineered skin bioconstructs available for skin reconstruction. J R Soc Interface 2010; 7 (43) 229-258
  • 105 Dikovsky D, Bianco-Peled H, Seliktar D. The effect of structural alterations of PEG-fibrinogen hydrogel scaffolds on 3-D cellular morphology and cellular migration. Biomaterials 2006; 27 (8) 1496-1506
  • 106 Janmey PA, Winer JP, Weisel JW. Fibrin gels and their clinical and bioengineering applications. J R Soc Interface 2009; 6 (30) 1-10