RSS-Feed abonnieren
DOI: 10.1055/s-0036-1588078
One-Pot Synthesis of α-Ylidene δ-Lactones from Functionalized Allylic Bromides in a Water–Isopropanol Medium
Publikationsverlauf
Received: 26. Juli 2016
Accepted after revision: 06. September 2016
Publikationsdatum:
13. Oktober 2016 (online)

Abstract
The one-pot microwave-assisted synthesis of a series of α-ylidene δ-lactones from (Z)-2-(bromomethyl)-2-alkenoates (derived from Morita–Baylis–Hillman reaction) in an aqueous environment is reported. The protocol includes regioselective base-mediated allylation of ethyl acetoacetate with (Z)-2-(bromomethyl)-2-alkenoates followed by decarboxylative hydrolysis, carbonyl reduction of the keto carboxylate intermediate, and acid-mediated cyclization of the resulting δ-hydroxy acid to furnish the α-ylidene δ-lactones with good overall yields. The synthesis was also performed in the stepwise mode, which allowed the isolation and full characterization of each intermediate involved in the one-pot method. The main features of this efficient transformation include the fast reaction rates, the use of a benign aqueous medium, the use of inexpensive and readily available reagents, the production of nearly innocuous residues, and the requirement for a single work-up and purification stage at the end of the process.
Key words
allylic bromide - δ-lactone - green chemistry - microwave - one-pot - Morita–Baylis–HillmanSupporting Information
- Supporting information for this article is available online at http://dx.doi.org/10.1055/s-0036-1588078.
- Supporting Information
-
References
- 1a Sheldon RA. Chem. Soc. Rev. 2012; 41: 1437
- 1b Anastas PT. Tetrahedron 2010; 66: 1026
- 1c Tucker JL. Org. Process Res. Dev. 2010; 14: 328
- 1d Bryan MC, Dillon B, Hamann LG, Hughes GJ, Kopach ME, Peterson EA, Pourashraf M, Raheem I, Richardson P, Richter D, Sneddon HF. J. Med. Chem. 2013; 56: 6007
- 2a Kappe CO, Dallinger D. Mol. Diversity 2009; 13: 71
- 2b Baig RB. N, Varma RS. Chem. Soc. Rev. 2012; 41: 1559
- 3a Dallinger D, Kappe CO. Chem. Rev. 2007; 107: 2563
- 3b Polshettiwar V, Varma RS. Acc. Chem. Res. 2008; 41: 629
- 4a Zhao W, Chen F.-E. Curr. Org. Synth. 2012; 9: 873
- 4b Climent MJ, Corma A, Iborra S. Chem. Rev. 2011; 111: 1072
- 4c Broadwater SJ, Roth SL, Price KE, Kobaslija M, McQuade DT. Org. Biomol. Chem. 2005; 3: 2899
- 5 Albrecht A, Albrecht Ł, Janecki T. Eur. J. Org. Chem. 2011; 2747
- 6a Kupchan SM, Hemingway RJ, Werner D, Karim A, McPhail AT, Sim GA. J. Am. Chem. Soc. 1968; 90: 3596
- 6b Dehal SS, Marples BA, Stretton RJ, Traynor JR. J. Med. Chem. 1980; 23: 90
- 6c Chagonda LS, Lockey PM, Marples BA, Traynor JR. Steroids 1984; 43: 283
- 6d McMurry JE, Dushin RG. J. Am. Chem. Soc. 1990; 112: 6942
- 6e Acton N, Karle JM, Miller RE. J. Med. Chem. 1993; 36: 2552
- 6f Heilmann J, Wasescha MR, Schmidt TJ. Bioorg. Med. Chem. 2001; 9: 2189
- 7a Albrecht L, Wojciechowski J, Albrecht A, Wolf WM, Janecka A, Studzian K, Krajewska U, Rózalski M, Janecki T, Krawczyk H. Eur. J. Med. Chem. 2010; 45: 710
- 7b Modranka J, Albrecht A, Janecki T. Synlett 2010; 2867
- 7c Janecki T, Wasek T. Tetrahedron 2004; 60: 1049
- 7d Albrecht L, Richter B, Krawczyk H, Jørgensen KA. J. Org. Chem. 2008; 73: 8337
- 7e Krawczyk H, Albrecht L, Wojciechowski J, Wolf WM. Tetrahedron 2007; 63: 12583
- 7f Krawczyk H, Sliwinski M, Kedzia J, Wojciechowski J, Wolf WM. Tetrahedron: Asymmetry 2007; 18: 2712
- 7g Krawczyk H, Sliwinski M, Kedzia J, Wojciechowski J, Wolf WM. Tetrahedron: Asymmetry 2006; 17: 908
- 7h Krawczyk H, Sliwinski M, Kedzia J. Tetrahedron: Asymmetry 2006; 17: 2817
- 7i Krawczyk H, Sliwinski M. Tetrahedron 2003; 59: 9199
- 8a Gupta A, Vankar YD. Tetrahedron 2000; 56: 8525
- 8b Krishna PR, Kannan V, Sharma GV. M. J. Org. Chem. 2004; 69: 6467
- 8c Leroy B. Tetrahedron Lett. 2005; 46: 7563
- 9a Matsuda I. J. Organomet. Chem. 1987; 321: 307
- 9b Basavaiah D, Satyanarayana T. Org. Lett. 2001; 3: 3619
- 9c Kim SJ, Lee HS, Kim JN. Tetrahedron Lett. 2007; 48: 1069
- 9d Mandal SK, Paira M, Roy SC. J. Org. Chem. 2008; 73: 3823
- 9e Ramachandran PV, Bhattacharyya A. Heterocycles 2010; 80: 863
- 9f Ramachandran PV, Pratihar D, Garner G, Raju BC. Tetrahedron Lett. 2011; 52: 4985
- 10 Singh V, Batra S. Synthesis 2006; 63
- 11a Ameer F, Drewes SE, Emslie ND, Kaye PT, Mann RL. J. Chem. Soc., Perkin Trans. 1 1983; 2293
- 11b Gowrisankar S, Kim KH, Kim SH, Kim JN. Tetrahedron Lett. 2008; 49: 6241
- 11c Kim KH, Lim JW, Lee J, Go MJ, Kim JN. Adv. Synth. Catal. 2014; 356: 3363
- 12a Basavaiah D, Veeraraghavaiah G. Chem. Soc. Rev. 2012; 41: 68
- 12b Basavaiah D, Reddy BS, Badsara SS. Chem. Rev. 2010; 110: 5447
- 12c Declerck V, Martinez J, Lamaty F. Chem. Rev. 2009; 109: 1
- 13a Ferreira M, Sá MM. Adv. Synth. Catal. 2015; 357: 829
- 13b Ferreira M, Assunção LS, Filippin-Monteiro FB, Creczynski-Pasa TB, Sá MM. Eur. J. Med. Chem. 2013; 70: 411
- 13c Sá MM, Ferreira M, Caramori GF, Zaramello L, Bortoluzzi AJ, Faggion DJr, Domingos JB. Eur. J. Org. Chem. 2013; 5180
- 13d Sá MM, Meier L. Heteroat. Chem. 2013; 24: 384
- 13e Silveira GP, Ferreira M, Fernandes L, Moraski GC, Cho S, Hwang C, Franzblau SG, Sá MM. Bioorg. Med. Chem. Lett. 2012; 22: 6486
- 14a Ferreira M, Fernandes L, Sá MM. J. Braz. Chem. Soc. 2009; 20: 564
- 14b Meier L, Ferreira M, Sá MM. Heteroat. Chem. 2012; 23: 179
- 14c Sá MM, Ferreira M, Lima ES, Santos I, Orlandi PP, Fernandes L. Braz. J. Microbiol. 2014; 45: 807
- 15 CCDC 1484394 contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.
Recent reviews on Morita–Baylis–Hillman reaction and synthetic applications: