RSS-Feed abonnieren
DOI: 10.1055/s-0036-1588080
Cross-Coupling of Amides by N–C Bond Activation
Publikationsverlauf
Received: 10. August 2016
Accepted after revision: 09. September 2016
Publikationsdatum:
04. Oktober 2016 (online)
‡ These authors contributed equally.
Abstract
In recent years, significant conceptual advances have taken place in the field of amide bond cross-coupling. Mild and selective functionalization of amides by transition-metal catalysis has an enormous potential for widespread applications in both industry and academia due to the unparalleled prevalence of amide-containing molecules. However, direct metal insertion into the N–C(O) amide bond is extremely difficult as a consequence of amidic resonance. In this account, we summarize our work on the development of new cross-coupling reactions of amides by N–C bond activation, and briefly discuss other modern developments in this area.
1 Introduction
2 Amide Bond Ground-State Distortion
3 Acyl Amide N–C Cross-Coupling
3.1 Suzuki Cross-Coupling
3.2 Negishi Cross-Coupling
3.3 Esterification and Amidation via N–C Cross-Coupling
4 Decarbonylative Amide N–C Cross-Coupling
4.1 Heck Cross-Coupling
4.2 Suzuki Cross-Coupling
4.3 C–H Activation
4.4 Decarbonylative Borylation
5 Transition-Metal-Free Activation of Amide Bonds
6 Mechanistic Studies
7 Conclusions and Outlook
-
References and Notes
- 1 Greenberg A, Breneman CM, Liebman JF. The Amide Linkage: Structural Significance in Chemistry, Biochemistry and Materials Science . Wiley-VCH; New York: 2003
- 2 Pattabiraman VR, Bode JW. Nature 2011; 480: 471
- 3 Brunton L, Chabner B, Knollman B. Goodman and Gilman’s The Pharmacological Basis of Therapeutics . MacGraw-Hill; New York: 2010
- 4 Brown DG, Bostrom J. J. Med. Chem. 2016; 59: 4443
- 5a Ghose AK, Viswanadhan VN, Wendoloski JJ. J. Comb. Chem. 1999; 1: 55
- 5b Montalbetti CA. G. N, Falque V. Tetrahedron 2005; 61: 10827
- 5c Lemke TL, Williams DA. Foye’s Principles of Medicinal Chemistry . Lippincott; Philadelphia: 2013
- 6 Roughley SD, Jordan AM. J. Med. Chem. 2011; 54: 3451
- 7 Beller M, Blaser HU. Top. Organomet. Chem. 2012; 42: 1
- 8 Marchildon K. Macromol. React. Eng. 2011; 5: 22
- 9a Trost BM, Fleming I. Comprehensive Organic Synthesis . Pergamon Press; Oxford: 1991
- 9b Smith MB, March J. Advanced Organic Chemistry 2007
- 10 Zabicky J. The Chemistry of Amides . Interscience; London: 1970
- 11a Metal-Catalyzed Cross-Coupling Reactions and More . de Meijere A, Bräse S, Oestreich M. Wiley; New York: 2014
- 11b Science of Synthesis: Cross-Coupling and Heck-Type Reactions . Molander G, Wolfe JP, Larhed M. Thieme; Stuttgart: 2013
- 11c Handbook of Organopalladium Chemistry for Organic Synthesis. Negishi E. Wiley; New York: 2002
- 12a Ouyang K, Hao W, Zhang WX, Xi Z. Chem. Rev. 2015; 115: 12045
- 12b Wang Q, Su Y, Li L, Huang H. Chem. Soc. Rev. 2016; 45: 1257
- 13 Kemnitz CR, Loewen MJ. J. Am. Chem. Soc. 2007; 129: 2521
- 14 Pauling L. Nobel Lecture: Modern Structural Chemistry. Sweden: 1954
- 15a Johansson-Seechurn CC. C, Kitching MO, Colacot TJ, Snieckus V. Angew. Chem. Int. Ed. 2012; 51: 5062
- 15b Wu XF, Anbarasan P, Neumann H, Beller M. Angew. Chem. Int. Ed. 2010; 49: 9047
- 16 For an excellent perspective, see: Ruider S, Maulide N. Angew. Chem. Int. Ed. 2015; 54: 13856
- 17a Chen Y, Turlik A, Newhouse T. J. Am. Chem. Soc. 2016; 138: 1166
- 17b Caldwell N, Jamieson C, Simpson I, Watson AJ. B. Chem. Commun. 2015; 51: 9495
- 17c Zhu R.-Y, Farmer ME, Chen Y.-Q, Yu J.-Q. Angew. Chem. Int. Ed. 2016; 55: 10578
- 17d Zultanski SL, Zhao J, Stahl SS. J. Am. Chem. Soc. 2016; 138: 6416
- 17e Bechara WS, Pelletier G, Charette AB. Nat. Chem. 2012; 4: 228
- 17f Das S, Addis D, Zhou S, Junge K, Beller M. J. Am. Chem. Soc. 2010; 132: 1770
- 17g Gnanaprakasam B, Milstein D. J. Am. Chem. Soc. 2011; 133: 1682
- 18 Trost BM. Science 1991; 254: 1471
- 19 Meng G, Szostak M. Org. Lett. 2015; 17: 4364
- 20 Meng G, Szostak M. Org. Biomol. Chem. 2016; 14: 5690
- 21 Szostak M, Aubé J. Chem. Rev. 2013; 113: 5701
- 22 Hartwig JF. Organotransition Metal Chemisty: From Bonding to Catalysis . University Science Books; Sausalito: 2010
- 23 Mahatthananchai J, Dumas A, Bode JW. Angew. Chem. Int. Ed. 2012; 51: 10954
- 24a Kirby AJ, Komarov IV, Wothers PD, Feeder N. Angew. Chem. Int. Ed. 1998; 37: 785
- 24b Tani K, Stoltz BM. Nature 2006; 441: 731
- 24c Lei Y, Wrobleski AD, Golden JE, Powell DR, Aubé J. J. Am. Chem. Soc. 2005; 127: 4552
- 25 Eliel EL, Wilen SH. Stereochemistry of Organic Compounds . Wiley; New York: 1994
- 26a Greenberg A, Venanzi CA. J. Am. Chem. Soc. 1993; 115: 6951
- 26b Greenberg A, Moore DT, DuBois TD. J. Am. Chem. Soc. 1996; 118: 8658
- 26c Cox C, Lectka T. Acc. Chem. Res. 2000; 33: 849
- 26d Wiberg KB. Acc. Chem. Res. 1999; 32: 922
- 27a Szostak R, Aubé J, Szostak M. Chem. Commun. 2015; 51: 6395
- 27b Szostak R, Aubé J, Szostak M. J. Org. Chem. 2015; 80: 7905
- 28 Winkler FK, Dunitz JD. J. Mol. Biol. 1971; 59: 169
- 29a Dieter RK. Tetrahedron 1999; 55: 4177
- 29b Zapf A. Angew. Chem. Int. Ed. 2003; 42: 5394
- 29c Gooßen LJ, Rodriguez N, Gooßen K. Angew. Chem. Int. Ed. 2008; 47: 3100
- 29d Brennführer A, Neumann H, Beller M. Angew. Chem. Int. Ed. 2009; 48: 4114
- 30 Hu F, Lalancette R, Szostak M. Angew. Chem. Int. Ed. 2016; 55: 5062
- 31 Li X, Zou G. Chem. Commun. 2015; 51: 5089
- 32 Weires NA, Baker EL, Garg NK. Nat. Chem. 2016; 8: 75
- 33 For ketone synthesis using the amide bond pyramidalization concept, see: Liu C, Achtenhagen M, Szostak M. Org. Lett. 2016; 18: 2375
- 34 Shi S, Szostak M. Chem. Eur. J. 2016; 22: 10420
- 35 Simmons BJ, Weires NA, Dander JE, Garg NK. ACS Catal. 2016; 6: 3176
- 36a Haas D, Hammann JM, Greiner R, Knochel P. ACS Catal. 2016; 6: 1540
- 36b Benischke AD, Ellwart M, Becker MR, Knochel P. Synthesis 2016; 48: 1101
- 36c Handbook of Functionalized Organometallics . Knochel P. Wiley; Weinheim: 2005
- 37 Hie L, Nathel NF. F, Shah TK, Baker EL, Hong X, Yang YF, Liu P, Houk KN, Garg NK. Nature 2015; 524: 79
- 38 For a report on Ni(cod)2 paraffin capsules in N–C cross-coupling, see: Dander JE, Weires NA, Garg NK. Org. Lett. 2016; 18: 3934
- 39 Baker EL, Yamano MM, Zhou Y, Anthony SM, Garg NK. Nat. Commun. 2016; 7: 11554
- 40a Dermenci A, Dong G. Sci. China Chem. 2013; 56: 685
- 40b Johnson JB, Rovis T. Acc. Chem. Res. 2008; 41: 327
- 40c Yamaguchi Y, Muto K, Itami K. Eur. J. Org. Chem. 2013; 19
- 40d For a recent impressive example of decarbonylative Suzuki cross-coupling of esters, see: Muto K, Yamaguchi J, Musaev DG, Itami K. Nat. Commun. 2015; 6: 7508
- 40e see ref. 40c
- 40f Tasker SZ, Standley EA, Jamison TF. Nature 2014; 509: 299
- 40g Cornella J, Zarate C, Martin R. Chem. Soc. Rev. 2014; 43: 8081
- 40h Rosen BM, Quasdorf KW, Wilson DA, Zhang N, Resmerita AM, Garg NK, Perec V. Chem. Rev. 2011; 111: 1346
- 40i Mesganaw T, Garg NK. Org. Process Res. Dev. 2013; 17: 29
- 41 Meng G, Szostak M. Angew. Chem. Int. Ed. 2015; 54: 14518
- 42 Shi S, Meng G, Szostak M. Angew. Chem. Int. Ed. 2016; 55: 6959
- 43 Meng G, Szostak M. Org. Lett. 2016; 18: 796
- 44 Hu J, Zhao Y, Liu J, Zhang Y, Shi Z. Angew. Chem. Int. Ed. 2016; 55: 8718
- 45 Sun CL, Shi ZJ. Chem. Rev. 2014; 114: 9219
- 46 Liu Y, Meng G, Liu R, Szostak M. Chem. Commun. 2016; 52: 6841
- 47 Szostak R, Shi S, Meng G, Lalancette R, Szostak M. J. Org. Chem. 2016; 81: 8091
- 48 Pace V, Holzer W, Meng G, Shi S, Lalancette R, Szostak R, Szostak M. Chem. Eur. J. 2016; 22: 14494
- 49 For amide N–C Suzuki cross-coupling of N-acylsaccharins, see: Liu C, Meng G, Liu Y, Liu R, Lalancette R, Szostak R, Szostak M. Org. Lett. 2016; 18: 4194
- 50 For amide N–C Suzuki cross-coupling by cooperative catalysis, see: Meng G, Shi S, Szostak M. ACS Catal. 2016; 6
For selected recent reports on amide bonds, see:
For reviews on acyl-metal intermediates, see:
For reviews on the Negishi cross-coupling, see:
For selected recent advances in C–O activation, see: