Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2017; 28(09): 1111-1115
DOI: 10.1055/s-0036-1588145
DOI: 10.1055/s-0036-1588145
letter
Synthesis of Quinoxaline Derivatives via Copper(I)-Catalyzed Cross-Coupling Reaction of 1,2-Dihalobenzenes with N,N′-Disubstituted Ethane-1,2-diamines under Ligand- and Solvent-Free Conditions
Further Information
Publication History
Received: 13 November 2016
Accepted after revision: 14 January 2017
Publication Date:
03 February 2017 (online)
Abstract
An efficient ligand- and solvent-free method for the synthesis of quinoxaline derivatives via copper(I)-catalyzed cross-coupling process has been developed. 1,2-Halobenzenes or 1,8-diiodonaphthalene coupled with N,N′-disubstituted ethane-1,2-diamines to give the corresponding products in moderate yields under the reaction conditions.
Key words
ligand-free - solvent-free - quinoxaline derivatives - copper(I)-catalyzed - cross-coupling reaction - 1,4-disubstituted-1,2,3,4-tetrahydroquinoxalinesSupporting Information
- Supporting information for this article is available online at http://dx.doi.org/10.1055/s-0036-1588145.
- Supporting Information
-
References and Notes
- 1 Renault J, Baron M, Mailliet P. Eur. J. Med. Chem. 1981; 16: 545-545
- 2a Chandrasekaran Y, Dutta GK, Kanth RB, Patil S. Dyes Pigm. 2009; 83: 162-162
- 2b Tian Z, Tian B, Zhang J. Dyes Pigm. 2013; 99: 1132-1132
- 2c Tian Z, Liu Y, Tian B, Zhang J. Res. Chem. Intermed. 2015; 41: 525-525
- 3a Watanabe K, Oguri H, Oikawa H. Curr. Opin. Chem. Biol. 2009; 13: 189-189
- 3b Sato M, Nakazawa T, Tsunematsu Y, Hotta K, Watanabe K. Curr. Opin. Chem. Biol. 2013; 17: 537-537
- 3c Watanabe K. Nat. Chem. Biol. 2006; 2: 423-423
- 4 Satam V, Rajule R, Bendre S, Bineesh P, Kanetkar V. J. Heterocycl. Chem. 2009; 46: 221-221
- 5 Jagtap AR, Satam VS, Rajule RN, Kanetkar VR. Dyes Pigm. 2011; 91: 20-20
- 6 Lalloz L, Caubere P. Synthesis 1975; 657-657
- 7a Jones RG, McLaughlin KC. Org. Synth. 1950; 30: 86-86
- 7b Strohmeier GA, Fabian WM. F, Uray G. Helv. Chim. Acta 2004; 87: 215-215
- 7c Dubovyk I, Pichugin D, Yudin AK. Angew. Chem. Int. Ed. 2011; 50: 5924-5924
- 7d Dubovyk I, Pichugin D, Yudin AK. Tetrahedron 2011; 67: 1633-1633
- 8a Evano G, Blanchard N, Toumi M. Chem. Rev. 2008; 108: 3054-3054
- 8b Monnier F, Taillefer M. Angew. Chem. Int. Ed. 2008; 47: 3096-3096
- 8c Matsumura S, Maeda Y, Nishimura T, Uemura S. J. Am. Chem. Soc. 2003; 125: 8862-8862
- 8d Cho SH, Kim JY, Kwak J, Chang S. Chem. Soc. Rev. 2011; 40: 5068-5068
- 8e Surry DS, Buchwald SL. Chem. Sci. 2010; 1: 13-13
- 8f Monnier F, Taillefer M. Angew. Chem. Int. Ed. 2009; 48: 6954-6954
- 8g Ma DW, Cai Q. Acc. Chem. Res. 2008; 41: 1450-1450
- 8h Liu Y, Wan JP. Chem. Asian J. 2012; 7: 1488-1488
- 8i Dai W, Shi H, Zhao X, Cao S. Org. Lett. 2016; 18: 4284-4284
- 8j Zhang J, Jia RP, Wang DH. Tetrahedron Lett. 2016; 57: 3604-3604
- 8k Wan JP, Hu D, Liu Y, Li L, Wen C. Tetrahedron Lett. 2016; 57: 2880-2880
- 8l Ke J, Tang Y, Yi H, Li Y, Cheng Y, Liu C, Lei A. Angew. Chem. Int. Ed. 2015; 54: 6604-6604
- 8m Navarro L, Pujol MD. Tetrahedron Lett. 2015; 56: 1812-1812
- 9 General Procedure for the Synthesis of Quinoxaline Derivatives An oven-dried Schlenk tube equipped with a Teflon valve was charged with a magnetic stir bar, CuI (0.05 mmol), 1,2-diiodobenzenes or 1,8-diiodonaphthalene a (0.5 mmol), and DBU (1.0 mmol). The tube was placed under vacuum for 20 min and backfilled with N2. Then N,N′-disubstituted 1,2-diamines b (1.0 mmol) was added through a syringe. The reaction mixture was stirred at 110 °C for 24 h. The reaction was monitored by TLC. When 1,2-diiodobenzenes or 1,8-diiodonaphthalene a consumed completely, the reaction was stopped and purified directly by column chromatography on silica gel to give the pure products c (PE–EtOAc, 10:1 v/v). Typical Analytical Data of 1,4,6-Trimethyl-1,2,3,4-tetrahydroquinoxaline (2c) Brown oil, 62 mg, 70% yield. 1H NMR (400 MHz, CDCl3/TMS): δ = 6.51–6.46 (m, 2 H), 6.38 (s, 1 H), 3.37–3.34 (m, 2 H), 3.29–3.27 (m, 2 H), 2.88 (s, 3 H), 2.85 (s, 3 H), 2.26 (s, 3 H). 13C NMR (100 MHz, CDCl3/TMS): δ = 136.95, 134.66, 127.82, 118.26, 111.88, 111.18, 50.28, 50.22, 39.68, 39.22, 21.09. ESI-HRMS: m/z calcd for C11H17N2 [M + H]+: 177.1392; found: 177.1390.