Synlett 2017; 28(13): 1641-1645
DOI: 10.1055/s-0036-1588180
letter
© Georg Thieme Verlag Stuttgart · New York

Facile Preparation of Λ-Shaped Building Blocks: Hünlich Base Derivatization

Masoud Kazem-Rostami*
Department of Chemistry and Biomolecular Sciences, Macquarie University, North Ryde, NSW 2109, Australia   Email: masoud.kazem-rostami@hdr.mq.edu.au   Email: masoud.kr@gmail.com
› Author Affiliations
The author wholeheartedly appreciates the Australian Government for providing him with a Research Training Program Scholarship (IPRS-2014004) and Macquarie University for the provided facilities, HDR43010477 grant and PGRF2016R2-1672525 fund.
Further Information

Publication History

Received: 17 March 2017

Accepted after revision: 25 April 2017

Publication Date:
17 May 2017 (online)


Abstract

Hünlich’s base modification has resulted in introducing a series of versatile Λ-shaped building blocks presented in this work. The methods are optimized to provide convenient approaches in the quicker production of these new building blocks in low-cost and low-risk.

Supporting Information

 
  • References and Notes

  • 1 Solano C. Svensson D. Olomi Z. Jensen J. Wendt OF. Wärnmark K. Eur. J. Org. Chem. 2005; 3510
  • 2 Bosmani A. Pujari S. Guenee L. Besnard C. Poblador Bahamonde AI. Lacour J. Chem. Eur. J. 2017; 23 : in press: 10.1002/chem.201700845
  • 3 Kazem-Rostami M. Synthesis 2017; 49: 1214
  • 4 Kazem-Rostami M. Moghanian A. Org. Chem. Front. 2017; 4: 224
  • 5 Harmata M. Kahraman M. Tetrahedron: Asymmetry 2000; 11: 2875
  • 6 Goldberg Y. Alper H. Tetrahedron Lett. 1995; 36: 369
  • 7 Boyle EM. Comby S. Molloy JK. Gunnlaugsson T. J. Org. Chem. 2013; 78: 8312
  • 9 Tatar A. Valík M. Novotná J. Havlík M. Dolenský B. Král V. Urbanová M. Chirality 2014; 26: 361
  • 14 Rigol S. Beyer L. Hennig L. Sieler J. Giannis A. Org. Lett. 2013; 15: 1418
  • 16 Khazaei A. Kazem-Rostami M. Zare A. Moosavi-Zare AR. Sadeghpour M. Afkhami A. J. Appl. Polym. Sci. 2013; 129: 3439
  • 17 Schneider P. US 2784167, 1957
  • 19 Takacs JM. Vayalakkada S. Jiang X. Organometallics. In Science of Synthesis: Houben-Weyl Methods of Molecular Transformations . Vol. 1. Lautens M. Thieme; Stuttgart: 2001: 304-313
  • 20 Petrovic M. Scarpi D. Nieger M. Jung N. Occhiato EG. Brase S. RSC Adv. 2017; 7: 9461
  • 21 Takagi K. Al-Amin M. Hoshiya N. Wouters J. Sugimoto H. Shiro Y. Fukuda H. Shuto S. Arisawa M. J. Org. Chem. 2014; 79: 6366
  • 22 Shang X. Xu L. Yang W. Zhou J. Miao M. Ren H. Eur. J. Org. Chem. 2013; 5475
  • 23 Hafner A. Hussal C. Bräse S. Synthesis 2014; 46: 1448
  • 25 Khazaei A. Kazem-Rostami M. Moosavi-Zare AR. Bayat M. Saednia S. Synlett 2012; 23: 1893
  • 27 Malik QM. Ijaz S. Craig DC. Try AC. Tetrahedron 2011; 67: 5798
  • 28 Kiehne U. Lützen A. Synthesis 2004; 1687
  • 29 Faroughi M. Try AC. Klepetko J. Turner P. Tetrahedron Lett. 2007; 48: 6548
  • 31 Sergeyev S. Helv. Chim. Acta 2009; 92: 415
  • 32 Zinelaabidine C. Souad O. Zoubir J. Malika B. Nour-Eddine A. Int. J. Chem. 2012; 4: 73
  • 33 Hu Y. Miles BT. Ho Y.-LD. Taverne MP. C. Chen L. Gersen H. Rarity JG. Faul CF. J. Adv. Opt. Mater. 2017; 5: 1600458
  • 34 Liao Y. Weber J. Mills BM. Ren Z. Faul CF. J. Macromolecules 2016; 49: 6322
  • 35 Synthesis and Characterization of Compound 1 Hünlich’s base (0.56 g, 2.0 mmol, 1.0 equiv) solution in H2SO4 (6.5%, 30 mL) was cooled down to –5 °C. A NaNO2 solution (0.30 g, 4.4 mmol, 2.2 equiv in 5 mL cold H2O) was dropped into the reaction flask and stirred for 30 min. The resulting yellowish solution was poured into a solution consisting N-benzylmethylamine (3 mL, excess), Na2CO3 (4.5 g), H2O (60 mL), and MeCN (30 mL) chilled at –10 °C. The stirring was continued for 3 h meanwhile the temperature was gradually raised to r.t.; afterward, a beige precipitate was extracted from the aqueous mixture by CH2Cl2 (3 × 50 mL). The CH2Cl2 layers were combined, dried over Na2SO4, and filtered. The evaporation of the CH2Cl2 gave the crude product which was then purified by chromatography to furnish the purified bistriazene compound 1 as a light-yellow solid. Yield 0.65 g (1.2 mmol, 60%); Rf = 0.3 (silica gel; MeOH–CH2Cl2, 2% v/v). IR (neat): 3027, 2941, 2893, 2844, 1610, 1486, 1441, 1341, 1173, 1047, 921, 697 cm–1. 1H NMR (400 MHz, CDCl3): δ = 7.28–7.38 (m, 12 H, CH), 6.74 (s, 2 H, CH), 4.91–5.02 (q, J = 16.1 Hz, 4 H, NCH2), 4.66–4.70 (d, J = 16.6 Hz, 2 H, CH2), 4.36 (s, 2 H, NCH2N), 4.22–4.26 (d, J = 16.8 Hz, 2 H, CH2), 3.15 (b, 6 H, NCH3), 2.30 (s, 6 H, CH3). 13C NMR (100 MHz, CDCl3): δ = 147.9, 146.3, 137.1, 129.0, 128.7, 128.6, 128.0, 127.7, 125.1, 112.7, 67.3, 58.8, 34.4, 17.2. MS (ESI+; i-PrOH): m/z [M + H]+ calcd for [C33H37N8]+: 545.31; found: 545.2. UV-vis: (EtOAc): λ (lg ε) = 297 (4.465) nm. Anal. Calcd for C33H36N8: C, 72.77; H, 6.66; N, 20.57. Found: C, 72.56; H, 6.85; N, 20.18.
  • 36 Synthesis and Characterization of Compound 2 The bistriazene compound 1 (0.54 g, 1.0 mmol, 1.0 equiv) was poured into a 50 mL round-bottom flask containing CH2Cl2 (20 mL). A solution of trichloroacetic acid (5.0 g, 30 mmol, excess, in CH2Cl2 (20 mL)) was added and stirred for 2 min. Afterward, Na2S (0.70 g, 9 mmol, excess) was slowly added to the reaction flask, as shown in the following figure, and remained sealed when stirred for 2 hours at r.t. The volume of the resulting yellowish suspension was then reduced to half by nitrogen gas flow and then refluxed for 30 min. The reaction mixture cooled down to r.t. and diluted with CH2Cl2 (100 mL), and filtered. The CH2Cl2 layer was rinsed with cold H2O (5 × 100 mL), dried over Mg2SO4, and filtered. The CH2Cl2 was removed, and the residue was purified by column chromatography to obtain a pale-lemon substance with a mild rotten-egg odour which was then stored under argon in darkness. Yield 0.06 g (0.19 mmol, 19%); Rf = 0.2 (silica gel, MeOH–CH2Cl2, 4% v/v). IR (neat): 2896, 2847, 2560, 1608, 1492, 1474, 1205, 1091, 1010, 811 cm–1. 1H NMR (400 MHz, CDCl3): δ = 7.62 (br, 2 H, SH), 6.65 (s, 2 H, CH), 6.17 (s, 2 H, CH), 4.56–4.60 (d, J = 16.7 Hz, 2 H), 4.28 (s, 2 H, NCH2N), 4.17–4.13 (d, J = 16.8 Hz, 2 H), 2.10 (s, 6 H, 2CH3). 13C NMR (100 MHz, CDCl3): δ = 143.8, 134.5, 128.6, 127.4, 126.8, 124.7, 67.1, 58.4, 20.9. MS (ESI+; i-PrOH–EtOAc–H2O/0.5% HCO2Na = 90:5:5): m/z [M + Na]+ calcd for [C17H18N2S2Na]+: 337.08; found: 337.0. MS (ESI): m/z [M – H] calcd for [C17H17N2S2]: 313.09; found: 313.1. MS (ESI+; MeCN/Δ): m/z [M + 2MeCN + H]+ calcd for [C21H25N4S2]+: 397.14; found: 397.1. UV-vis: (EtOAc): λ (lg ε) = 277 (3.583) nm. Anal. Calcd for C17H18N2S2: C, 64.93; H, 5.77; N, 8.91; S, 20.39. Found: C, 65.08; H, 5.83; N, 9.22.
  • 37 Synthesis and Characterization of Compound 3 Hünlich’s base (0.56 g, 2.0 mmol, 1.0 equiv) was dissolved in H2SO4 (6.5%, 90 mL), then cooled down to –5 °C. A NaNO2 solution (0.30 g, 4.4 mmol, 2.2 equiv) in cold H2O (10 mL) was dropped into the reaction flask and stirred for 30 min. Afterward, the solution’s temperature was gradually raised to boil, over 2 h (attention: this step releases nitrogen gas; hence, rapid heating and sealing the container may lead to explosion). The reaction mixture was cooled down to r.t., its pH was adjusted to 5 (by adding Na2CO3 sat. solution) and extracted with EtOAc (5 × 30 mL), the organic layers were combined, dried over Na2SO4, and evaporated to dryness to obtain the product as a light-grey powder. Yield 0.54 g (1.9 mmol, 96%). Rf = 0.3 (silica gel, MeOH–CH2Cl2, 8% v/v). IR (neat): 3649, 3549, 3012, 2948, 2904, 2857, 1620, 1508, 1368, 1081, 910 cm−1. 1H NMR (400 MHz, DMSO-d 6): δ = 9.06 (s, 2 H, OH), 6.56 (s, 2 H, CH), 6.45 (s, 2 H, CH), 4.39–4.43 (d, J = 16.4 Hz, 2 H, CH2), 4.07 (s, 2 H, NCH2N), 3.81–3.85 (d, J = 16.4 Hz, 2 H, CH2), 1.97 (s, 6 H, CH3). 13C NMR (100 MHz, DMSO-d 6): δ = 154.1, 146.5, 128.2, 119.9, 117.9, 110.0, 66.5, 57.8, 15.5. MS (ESI+; EtOH–EtOAc–H2O, 90:5:5): m/z [M + H]+ calcd for [C17H19N2O2]+: 283.14; found: 283.1. MS (ESI): m/z [M – H] calcd for [C17H17N2O2]: 281.14; found: 281.1. UV-vis: (EtOAc): λ (lg ε) = 292 (3.643) nm. Anal. Calcd for C17H18N2O2: C, 72.32; H, 6.43; N, 9.92; O, 11.33. Found: C, 72.21; H, 6.61; N, 9.74.