Synlett 2016; 27(20): 2858-2862
DOI: 10.1055/s-0036-1588317
letter
© Georg Thieme Verlag Stuttgart · New York

Potassium Persulfate Mediated Conjugation of β-Ketosulfones with TEMPO

C.-K. Chan
Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan   Email: mychang@kmu.edu.tw
,
M.-Y. Chang*
Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan   Email: mychang@kmu.edu.tw
› Author Affiliations
Further Information

Publication History

Received: 13 July 2016

Accepted after revision: 28 August 2016

Publication Date:
09 September 2016 (online)


Abstract

We report a simple route for the preparation of α-aminoxy-β-ketosulfones in high yields by a potassium persulfate mediated α-aminoxylation of β-ketosulfones with TEMPO in acetonitrile at room temperature for 12 hours.

Supporting Information

 
  • References and Notes


    • Oxidant-mediated conjugation of 1,3-dicarbonyl synthons with TEMPO. For CuCl2/β-keto esters, see:
    • 2a Luo X, Wang Z.-L, Jin J.-H, An X.-L, Shen Z, Deng W.-P. Tetrahedron 2014; 70: 8226

    • For alkenes/β-diesters, see:
    • 2b Wetter C, Jantos K, Woithe K, Studer A. Org. Lett. 2003; 5: 2899

    • For CAN/β-keto esters, see:
    • 2c Feng P, Sun X, Su Y, Li X, Zhang L.-H, Shi X, Jiao N. Org. Lett. 2014; 16: 3388
    • 2d Feng P, Song S, Zhang L.-H, Jiao N. Synlett 2014; 25: 2717

      Oxidant-mediated conjugation of carbonyl synthons with TEMPO. For CuCl/aldehydes, see:
    • 3a Schoening K.-U, Fischer W, Hauck S, Dichtl A, Kuepfert M. J. Org. Chem. 2009; 74: 1567

    • For Cu/Fe/α-alkoxyketones, see:
    • 3b Xie Y.-X, Song R.-J, Liu Y, Liu Y.-Y, Xiang J.-N, Li J.-H. Adv. Synth. Catal. 2013; 355: 3387

      Organocatalyst-mediated α-alkoxyamination of aldehydes via enamine intermediates. For proline, see:
    • 4a Hayashi Y, Yamaguchi J, Hibino K, Shoji M. Tetrahedron Lett. 2003; 44: 8293
    • 4b Brown SP, Brochu MP, Sinz CJ, MacMillan DW. C. J. Am. Chem. Soc. 2003; 125: 10808

    • For imidazolidinone, see:
    • 4c Sibi MP, Hasegawa M. J. Am. Chem. Soc. 2007; 129: 4124

    • For pyrrolidine/electrolysis, see:
    • 4d Bui N.-N, Ho X.-H, Mho S.-i, Jang H.-Y. Eur. J. Org. Chem. 2009; 5309

    • For imidazolidinone/CuCl2, see:
    • 4e Simonovich SP, Van Humbeck JF, MacMillan DW. C. Chem. Sci. 2012; 3: 58
    • 4f Abeykoon GA, Chatterjee S, Chen JS. Org. Lett. 2014; 16: 3248

    • For pyrrolidine/FeCl3, see:
    • 4g Van Humbeck JF, Simonovich SP, Knowles RR, MacMillan DW. C. J. Am. Chem. Soc. 2010; 132: 10012

    • For peptide/FeCl2, see:
    • 4h Akagawa K, Fujiwara T, Sakamoto S, Kudo K. Org. Lett. 2010; 12: 1804

      Base-mediated α-alkoxyamination of carbonyl synthons via enolate intermediates. For pyridine/ketones, see:
    • 5a Li Y, Pouliot M, Vogler T, Renaud P, Studer A. Org. Lett. 2012; 14: 4474

    • For LDA/esters, see:
    • 5b Jahn U. J. Org. Chem. 1998; 63: 7130
    • 5c Jahn U, Hartmann P, Dix I, Jones PG. Eur. J. Org. Chem. 2001; 3333

    • For TiCl4/DIPEA/ketones, see:
    • 5d Gómez-Palomino A, Pellicena M, Romo JM, Solà R, Romea P, Urpi F, Font-Bardia M. Chem. Eur. J. 2014; 20: 10153

      Photolytic conjugation of carbonyl or 1,3-dicarbonyl synthons: For Ru(II)/aldehydes, see:
    • 6a Koike T, Akita M. Chem. Lett. 2009; 38: 166

    • For Ru(II)/Ir(III)/β-keto esters, see:
    • 6b Koike T, Yasu Y, Akita M. Chem. Lett. 2012; 41: 999

    • For rose bengal/β-keto esters, see:
    • 6c Liu H, Feng W, Kee CW, Zhao Y, Leow D, Pan Y, Tan C.-H. Green Chem. 2010; 12: 953

    • For Ru(II)/β-diketones, see:
    • 6d Schroll P, König B. Eur. J. Org. Chem. 2015; 309

    • For Ru(II)/β-keto esters, see:
    • 6e Daniel M, Fensterbank L, Goddard J.-P, Ollivier C. Org. Chem. Front. 2014; 1: 551

      Synthetic applications on β-ketosulfones. For styrylsulfones, see:
    • 7a Chang M.-Y, Chen Y.-C, Chan C.-K. Synlett 2014; 25: 1739

    • For vinylcyclopropanes, see:
    • 7b Chang M.-Y, Chen Y.-C, Chan C.-K. Tetrahedron 2014; 70: 8908

    • For tetrahydrofurans, see:
    • 7c Chang M.-Y, Cheng Y.-C. Synlett 2016; 27: 854

    • For tetrahydropyrans, see:
    • 7d Chang M.-Y, Lu Y.-J, Cheng Y.-C. Tetrahedron 2015; 71: 1192

    • For dihydropyrans, see:
    • 7e Chang M.-Y, Chen Y.-H, Cheng Y.-C. Tetrahedron 2016; 72: 518

    • For pyrroles, see:
    • 7f Chang M.-Y, Cheng Y.-C, Lu Y.-J. Org. Lett. 2014; 16: 6252

    • For vinylfurans, see:
    • 7g Chan C.-K, Lu Y.-J, Chang M.-Y. Tetrahedron 2015; 71: 9544

    • For arylfurans, see:
    • 7h Chang M.-Y, Cheng Y.-C, Lu Y.-J. Org. Lett. 2015; 17: 1264

    • For arenes, see:
    • 7i Chang M.-Y, Cheng Y.-C, Lu Y.-J. Org. Lett. 2015; 17: 3142

    • For arylpyridazines, see:
    • 7j Chang M.-Y, Lu Y.-J, Cheng Y.-C. Tetrahedron 2015; 71: 6840

    • For tetralins and benzosuberans, see:
    • 7k Chang M.-Y, Cheng Y.-C. Org. Lett. 2016; 18: 608

    • For aryltetralins, see:
    • 7l Chang M.-Y, Cheng Y.-C. Org. Lett. 2016; 18: 1682

    • For arylnaphthalenes, see:
    • 7m Chang M.-Y, Huang Y.-H, Wang H.-S. Tetrahedron 2016; 72: 1888

    • For phenanthrenes, see:
    • 7n Chang M.-Y, Chen Y.-C, Chan C.-K. Tetrahedron 2015; 71: 782

    • For phenanthrofurans, see:
    • 7o Chan C.-K, Chen Y.-C, Chen Y.-L, Chang M.-Y. Tetrahedron 2015; 71: 9187
  • 8 For DDQ-mediated oxidation of β-keto esters, see: Wang Z.-L, An X.-L, Ge L.-S, Jin J.-H, Luo X, Deng W.-P. Tetrahedron 2014; 70: 3788
  • 9 Alkoxyamines 4; General Procedure K2S2O8 (2a, 300 mg, 1.1 mmol) was added to a solution of the appropriate β-keto sulfone 1 (1.0 mmol) and TEMPO analogue 3 (1.2 mmol) in MeCN (5 mL) at r.t., and the mixture was stirred at r.t. for 12 h. The solvent was evaporated and the residue was diluted with H2O (10 mL). The mixture was extracted with EtOAc (3 × 20 mL) and the organic layers were combined, washed with brine, dried, filtered, and concentrated to afford the crude product, which was purified by chromatography [silica gel, hexanes–EtOAc (10:1 to 6:1)] 2-(Methylsulfonyl)-1-phenyl-2-[(2,2,6,6-tetramethylpiperidin-1-yl)oxy]ethanone (4a) Colorless gum; yield: 282 mg (80%); 1H NMR (400 MHz, CDCl3): δ = 8.03 (d, J = 7.2 Hz, 2 H), 7.66 (t, J = 7.6 Hz, 1 H), 7.54 (t, J = 7.6 Hz, 2 H), 6.22 (s, 1 H), 3.11 (s, 3 H), 1.57 (br s, 6 H), 1.43 (br s, 2 H), 1.31 (br s, 4 H), 1.18 (br s, 3 H), 0.86 (br s, 3 H); 13C NMR (100 MHz, CDCl3): δ = 194.15, 136.34, 133.71 (2 C), 128.65 (2 C), 128.43 (2 C), 94.78, 61.70, 60.26, 40.46, 40.25, 37.16, 33.52, 32.57, 19.81, 16.25. HRMS (ESI): m/z [M + 1]+ calcd for C18H28NO4S: 354.1739; found: 354.1743;
    • 10a Luke TL, Mohan H, Manoj VM, Manoj P, Mittal JP, Aravindakumar CT. Res. Chem. Intermed. 2003; 29: 379
    • 10b Laha JK, Tummalalli KS. S, Nair A, Patel N. J. Org. Chem. 2015; 80: 11351
    • 11a Song HJ, Lee TH, Han MH, Lee JY, Moon DK. Polymer 2013; 54: 1072
    • 11b Liu XM, Zhao Q, Li Y, Song W.-C, Li Y.-P, Chang Z, Bu X.-H. Chin. Chem. Lett. 2013; 24: 962
    • 11c Shi J, Chai Z, Su J, Chen J, Tang R, Fan K, Zhang L, Han H, Qin J, Peng T, Li Q, Li Z. Dyes Pigm. 2013; 98: 405
    • 11d Li H, Koh TM, Hagfeldt A, Grätzel M, Mhaisalkar SG, Grimsdale AC. Chem. Commun. 2013; 49: 2409
    • 11e Venkateswararao A, Tyagi P, Thomas KR. J, Chen P.-W, Ho K.-C. Tetrahedron 2014; 70: 6318

      For recent reports on biological activities of quinoxalines, see:
    • 12a Kotharkar SA, Shinde DB. Bioorg. Med. Chem. Lett. 2006; 16: 6181
    • 12b Rodrigues FA. R, Bomfim Ida S, Cavalcanti BC, Pessoa CÓ do, Wardell JL, Wardell SM. S. V, Pinheiro AC, Kaiser CR, Nogueira TC. M, Low JN, Gomes LR, de Souza MV. N. Bioorg. Med. Chem. Lett. 2014; 24: 934
    • 12c Parhi AK, Zhang Y, Saionz KW, Pradhan P, Kaul M, Trivedi K, Pilch DS, LaVoie EJ. Bioorg. Med. Chem. Lett. 2013; 23: 4968
    • 12d Guillon J, Moreau E, Mouray S, Sinou V, Forfar I, Fabre SB, Desplat V, Millet P, Parzy D, Jarry C, Grellier P. Bioorg. Med. Chem. 2008; 16: 9133

      For examples of syntheses of quinoxalines, see:
    • 13a Zhang C, Xu Z, Zhang L, Jiao N. Tetrahedron 2012; 68: 5258
    • 13b Cho CS, Ren WX, Shim SC. Tetrahedron Lett. 2007; 48: 4665
    • 13c Robin RS, Taylor RJ. K. Synlett 2005; 1003
    • 13d Meshram HM, Ramesh P, Kumar GS, Reddy BC. Tetrahedron Lett. 2010; 51: 4313
    • 13e Chang MY, Lee TW, Hsu RT, Yen TL. Synthesis 2011; 3143
    • 13f Kim SY, Park KH, Chung YK. Chem. Commun. 2005; 1321
    • 13g Pan F, Chen T.-M, Cao J.-J, Zou J.-P, Zhang W. Tetrahedron Lett. 2012; 53: 2508
    • 13h Meshram HM, Ramesh P, Kumar GS, Reddy BC. Tetrahedron Lett. 2010; 51: 4313
    • 13i Qi C, Jiang H, Huang L, Chen Z, Chen H. Synthesis 2011; 19: 387
    • 13j Akkilagunta VK, Reddy VP, Kakulapati RR. Synlett 2010; 2571
    • 13k Tingoli M, Mazzella M, Panunzi B, Tuzi A. Eur. J. Org. Chem. 2011; 399
    • 13l Yang Y, Zhang S, Wu B, Ma M, Chen X, Qin X, He M, Hussain S, Jing C, Ma B, Zhu C. ChemMedChem 2012; 7: 823
    • 13m Schmidt B, Krehl S, Hauke S. J. Org. Chem. 2013; 78: 5427
    • 13n Huang T.-Q, Qu W.-Y, Ding J.-C, Liu M.-C, Wu H.-Y, Chen J.-X. J. Heterocycl. Chem. 2013; 50: 293
    • 13o Edayadulla N, Lee YR. RSC Adv. 2014; 4: 11459
    • 13p Dandia A, Parewa V, Maheshwari S, Rathore KS. J. Mol. Catal. A: Chem. 2014; 394: 244
    • 13q Xie C, Zhang Z, Yang B, Song G, Gao H, Wen L, Ma C. Tetrahedron 2015; 71: 1831
    • 13r Go A, Lee G, Kim J, Bae S, Lee BM, Kim BH. Tetrahedron 2015; 71: 1215
    • 13s Nasar MK, Kumar RR. Perumal S. Tetrahedron Lett. 2007; 48: 2155
    • 13t Climent MJ, Corma A, Hernández JC, Hungria AB, Iborra S, Martínez-Silvestre S. J. Catal. 2012; 292: 118
    • 13u Martin LJ, Marzinzik AL, Ley SV, Baxendale IR. Org. Lett. 2011; 13: 320
    • 13v Castillo J.-C, Presset M, Abonia R, Coquerel Y, Rodriguez J. Eur. J. Org. Chem. 2012; 2338
    • 13w Wang W, Shen Y, Meng X, Zhao M, Chen Y, Chen B. Org. Lett. 2011; 13: 4514
    • 13x Xu Y, Wan X. Tetrahedron Lett. 2013; 54: 642
    • 13y Shi S, Wang T, Yang W, Rudolph M, Hashmi AS. K. Chem. Eur. J. 2013; 19: 6576
  • 14 Song J, Li X, Chen Y, Zhao M, Dou Y, Chen B. Synlett 2012; 23: 2416