Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
          
          https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
        Synlett 2017; 28(07): 741-750
DOI: 10.1055/s-0036-1588403
   DOI: 10.1055/s-0036-1588403
synpacts
   CO2 = CO + O: Redox-Neutral Lactamization and Lactonization of C–H Bonds with CO2
Authors
Further Information
            
               
                  
            
         
      
   Publication History
Received: 16 December 2016
Accepted after revision: 06 January 2017
Publication Date:
31 January 2017 (online)

In memory of Professor Xiao-Zeng You
Abstract
Carbon dioxide, a nontoxic, cheap and readily available greenhouse gas, acts as the ideal carbonyl source with similar function as the combination of CO and oxidants (‘CO2 = CO + O’). We highlight this concept with recent advances of the lactamization and lactonization of C–H bond with CO2 under redox-neutral or even transition-metal-free conditions.
- 
            
References
 - 1 Colquhoun HM, Thompson DJ, Twigg MV. Carbonylation: Direct Synthesis of Carbonyl Compounds . Plenum Press; New York: 1991
 - 2 Babad H, Zeiler AG. Chem. Rev. 1973; 73: 75
 - 3a Schoenberg A, Bartoletti I, Heck RF. J. Org. Chem. 1974; 39: 3318
 - 3b Schoenberg A, Heck RF. J. Org. Chem. 1974; 39: 3327
 - 3c Brennführer A, Neumann H, Beller M. Angew. Chem. Int. Ed. 2009; 48: 4114
 - 3d Wu X.-F, Neumann H, Beller M. Chem. Soc. Rev. 2011; 40: 4986
 - 3e Sumino S, Fusano A, Fukuyama T, Ryu I. Acc. Chem. Res. 2014; 47: 1563
 - 4a Wu X.-F, Neumann H, Beller M. Chem. Rev. 2013; 113: 1
 - 4b Wu X.-F, Neumann H, Beller M. ChemSusChem 2013; 6: 229
 - 4c Lang R, Xia C, Li F. New J. Chem. 2014; 38: 2732
 - 5a Morimoto T, Kakiuchi K. Angew. Chem. Int. Ed. 2004; 43: 5580
 - 5b Wu L, Liu Q, Jackstell R, Beller M. Angew. Chem. Int. Ed. 2014; 53: 6310
 - 5c Friis SD, Lindhardt AT, Skrydstrup T. Acc. Chem. Res. 2016; 49: 594
 - 5d Peng J.-B, Qi X, Wu X.-F. Synlett 2017; 28: 175
 - 5e Wang Y, Ren W, Li J, Wang H, Shi Y. Org. Lett. 2014; 16: 5960
 - 5f Wu L, Liu Q, Jackstell R, Beller M. Angew. Chem. Int. Ed. 2014; 53: 6310
 - 5g Gehrtz PH, Hirschbeck V, Fleischer I. Chem. Commun. 2015; 51: 12574
 - 5h Gockel SN, Hull KL. Org. Lett. 2015; 17: 3236
 - 5i Liu Q, Yuan K, Arockiam P.-B, Franke R, Doucet H, Jackstell R, Beller M. Angew. Chem. Int. Ed. 2015; 54: 4493
 - 5j Liu X, Li B, Gu Z. J. Org. Chem. 2015; 80: 7547
 - 5k Wu X, Zhao Y, Ge H. J. Am. Chem. Soc. 2015; 137: 4924
 - 5l Wu XF. Chem. Eur. J. 2015; 21: 12252
 - 6a Braunstein P, Matt D, Nobel D. Chem. Rev. 1988; 88: 747
 - 6b Sakakura T, Choi J.-C, Yasuda H. Chem. Rev. 2007; 107: 2365
 - 6c Correa A, Martín R. Angew. Chem. Int. Ed. 2009; 48: 6201
 - 6d Sakakura T, Kohno K. Chem. Commun. 2009; 1312
 - 6e Dong D, Yang P, Hu W. Prog. Chem. 2009; 21: 1217
 - 6f Mikkelsen M, Jørgensen M, Krebs FC. Energy Environ. Sci. 2010; 3: 43
 - 6g Riduan SN, Zhang Y. Dalton Trans. 2010; 39: 3347
 - 6h Cokoja M, Bruckmeier C, Rieger B, Herrmann WA, Kühn FE. Angew. Chem. Int. Ed. 2011; 50: 8510
 - 6i Huang K, Sun CL, Shi Z.-J. Chem. Soc. Rev. 2011; 40: 2435
 - 6j Martin R, Kleij AW. ChemSusChem 2011; 4: 1259
 - 6k Wang J.-L, Miao C.-X, Dou X.-Y, Gao J, He L.-N. Curr. Org. Chem. 2011; 15: 621
 - 6l Tsuji Y, Fujihara T. Chem. Commun. 2012; 48: 9956
 - 6m Yang Z.-Z, He L.-N, Gao J, Liu A.-H, Yu B. Energy Environ. Sci. 2012; 5: 6602
 - 6n Zhang W, Lu X. Chin. J. Catal. 2012; 33: 745
 - 6o He M, Sun Y, Han B. Angew. Chem. Int. Ed. 2013; 52: 9620
 - 6p Cai X, Xie B. Synthesis 2013; 45: 3305
 - 6q Zhang L, Hou Z. Chem. Sci. 2013; 4: 3395
 - 6r Kielland N, Whiteoak CJ, Kleij AW. Adv. Synth. Catal. 2013; 355: 2115
 - 6s Aresta M, Dibenedetto A, Angelini A. Chem. Rev. 2014; 114: 1709
 - 6t Maeda C, Miyazaki Y, Ema T. Catal. Sci. Technol. 2014; 4: 1482
 - 6u Yeung CS, Dong VM. Top. Catal. 2014; 57: 1342
 - 6v Liu Q, Wu L, Jackstell R, Beller M. Nat. Commun. 2015; 6: 5933
 - 6w Pinaka A, Vougioukalakis GC. Coord. Chem. Rev. 2015; 288: 69
 - 6x Yu B, He LN. ChemSusChem 2015; 8: 52
 - 6y Wang S, Du G, Xi C. Org. Biomol. Chem. 2016; 14: 3666
 - 6z Börjesson M, Moragas T, Gallego D, Martin R. ACS Catal. 2016; 6: 6739
 - 7a Olah GA, Török B, Joschek JP, Bucsi I, Esteves PM, Rasul G, Prakash GK. S. J. Am. Chem. Soc. 2002; 124: 11379
 - 7b Boogaerts II. F, Fortman GC, Furst MR. L, Cazin CS. J, Nolan SP. Angew. Chem. Int. Ed. 2010; 49: 8674
 - 7c Zhang L, Cheng J, Ohishi T, Hou Z. Angew. Chem. Int. Ed. 2010; 49: 8670
 - 7d Li S, Yuan W, Ma S. Angew. Chem. Int. Ed. 2011; 50: 2578
 - 7e Mizuno H, Takaya J, Iwasawa N. J. Am. Chem. Soc. 2011; 133: 1251
 - 7f Li Y, Yan T, Junge K, Beller M. Angew. Chem. Int. Ed. 2014; 53: 10476
 - 7g Chong CC, Kinjo R. Angew. Chem. Int. Ed. 2015; 54: 12116
 - 7h Masuda Y, Ishida N, Murakami M. J. Am. Chem. Soc. 2015; 137: 14063
 - 7i Ueno A, Takimoto M, Wylie WN. O, Nishiura M, Ikariya T, Hou Z. Chem. Asian J. 2015; 10: 1010
 - 7j Amaya T, Kurata I, Hirao T. Org. Chem. Front. 2016; 3: 929
 - 7k Banerjee A, Dick GR, Yoshino T, Kanan MW. Nature (London, U.K.) 2016; 531: 215
 - 7l Bobbink FD, Gruszka W, Hulla M, Das S, Dyson PJ. Chem. Commun. 2016; 52: 10787
 - 7m Moragas T, Gaydou M, Martin R. Angew. Chem. Int. Ed. 2016; 55: 5053
 - 7n Börjesson M, Moragas T, Martin R. J. Am. Chem. Soc. 2016; 138: 7504
 - 7o Cui F.-H, Su S.-X, Xu Y.-L, Liang Y, Wang H.-S, Pan Y.-M. Org. Chem. Front. 2016; 3: 1304
 - 7p Fenner S, Ackermann L. Green Chem. 2016; 18: 3804
 - 7q Hoshimoto Y, Asada T, Hazra S, Kinoshita T, Sombut P, Kumar R, Ohashi M, Ogoshi S. Angew. Chem. Int. Ed. 2016; 55: 16075
 - 7r Ishida N, Masuda Y, Uemoto S, Murakami M. Chem. Eur. J. 2016; 22: 6524
 - 7s Cao T, Ma S. Org. Lett. 2016; 18: 1510
 - 7t Mita T, Tanaka H, Higuchi Y, Sato Y. Org. Lett. 2016; 18: 2754
 - 7u Nogi K, Fujihara T, Terao J, Tsuji Y. J. Am. Chem. Soc. 2016; 138: 5547
 - 7v Tanaka S, Watanabe K, Tanaka Y, Hattori T. Org. Lett. 2016; 18: 2576
 - 7w Yu B, Cheng B.-B, Liu W.-Q, Li W, Wang S.-S, Cao J, Hu C.-W. Adv. Synth. Catal. 2016; 358: 90
 - 7x Miao B, Li S, Li G, Ma S. Org. Lett. 2016; 18: 2556
 - 7y Shao P, Wang S, Chen C, Xi C. Org. Lett. 2016; 18: 2050
 - 7z Ye J.-H, Song L, Zhou W.-J, Ju T, Yin Z.-B, Yan S.-S, Zhang Z, Li J, Yu D.-G. Angew. Chem. Int. Ed. 2016; 55: 10022
 - 7aa Zhang Z, Sun Q, Xia C, Sun W. Org. Lett. 2016; 18: 6316
 - 7ab Ren X, Zheng Z, Zhang L, Wang Z, Xia C, Ding K. Angew. Chem. Int. Ed. 2017; 56: 310
 - 8a Cheng P, Zhang Q, Ma Y.-B, Jiang Z.-Y, Zhang X.-M, Zhang F.-X, Chen J.-J. Bioorg. Med. Chem. Lett. 2008; 18: 3787
 - 8b Angibaud PR, Venet MG, Filliers W, Broeckx R, Ligny YA, Muller P, Poncelet VS, End DW. Eur. J. Org. Chem. 2004; 479
 - 8c Labaudinihre R, Hendel W, Terlain B, Cavy F, Marquis O, Dereu N. J. Med. Chem. 1992; 35: 4306
 - 8d Hino K, Furukawa K, Nagai Y, Uno H. Chem. Pharm. Bull. 1980; 28: 2618
 - 8e Miyashiro J, Woods KW, Park CH, Liu X, Shi Y, Johnson EF, Bouska JJ, Olsona AM, Luo Y, Fry EH, Giranda VL, Penning TD. Bioorg. Med. Chem. Lett. 2009; 19: 4050
 - 9a Ferguson J, Zeng F, Alwis N, Alper H. Org. Lett. 2013; 15: 1998
 - 9b Liang D, Hu Z, Peng J, Huang J, Zhu Q. Chem. Commun. 2013; 49: 173
 - 9c Rajeshkumar V, Lee T.-H, Chuang S.-C. Org. Lett. 2013; 15: 1468
 - 9d Liang Z, Zhang J, Liu Z, Wang K, Zhang Y. Tetrahedron 2013; 69: 6519
 - 10 Zhang Z, Liao L.-L, Yan S.-S, Wang L, He Y.-Q, Ye J.-H, Li J, Zhi Y.-G, Yu D.-G. Angew. Chem. Int. Ed. 2016; 55: 7068
 - 11a McGhee W, Riley D, Christ K, Pan Y, Parnas B. J. Org. Chem. 1995; 60: 2820
 - 11b Yoshida M, Hara N, Okuyama S. Chem. Commun. 2000; 151
 - 11c Salvatore RN, Shin SL, Nagle AS, Jung KW. J. Org. Chem. 2001; 66: 1035
 - 11d Peterson SL, Stucka SM, Dinsmore CJ. Org. Lett. 2010; 12: 1340
 - 12a Valli VL. K, Alper H. J. Org. Chem. 1995; 60: 257
 - 12b Luo L, Bartberger MD, William R, Dolbier J. J. Am. Chem. Soc. 1997; 119: 12366
 - 13 Liu D, Tian Z, Yan Z, Wu L, Ma Y, Wang Q, Liu W, Zhou H, Yang C. Bioorg. Med. Chem. 2013; 21: 2960
 - 14 Wang S, Shao P, Du G, Xi C. J. Org. Chem. 2016; 81: 6672
 - 15 Sun S, Hu W.-M, Gu N, Cheng J. Chem. Eur. J. 2016; 22: 18729
 - 16a Kontogiorgis CA, Hadjipavlou-Litina DJ. J. Med. Chem. 2005; 48: 6400
 - 16b Melliou E, Magiatis P, Mitaku S, Skaltsounis A.-L, Chinou E, Chinou I. J. Nat. Prod. 2005; 68: 78
 - 16c Symeonidis T, Chamilos M, Hadjipavlou-Litina DJ, Kallitsakis M, Litinas KE. Bioorg. Med. Chem. Lett. 2009; 19: 1139
 - 16d Vasconcelos JF, Teixeira MM, Barbosa-Filho JM, Agra MF, Nunes XP, Giulietti AM, Ribeiro-dos-Santos R, Soares MB. P. Eur. J. Pharmacol. 2009; 609: 126
 - 16e Huang XY, Shan ZJ, Zhai HL, Su L, Zhang XY. Chem. Biol. Drug Des. 2011; 78: 651
 - 16f Zhao H, Donnelly AC, Kusuma BR, Brandt GE. L, Brown D, Rajewski RA, Vielhauer G, Holzbeierlein J, Cohen MS, Blagg BS. J. J. Med. Chem. 2011; 54: 3839
 - 16g Chen Y, Wang S, Xu X, Liu X, Yu M, Zhao S, Liu S, Qiu Y, Zhang T, Liu B.-F, Zhang G. J. Med. Chem. 2013; 56: 4671
 - 16h Narumi T, Takano H, Ohashi N, Suzuki A, Furuta T, Tamamura H. Org. Lett. 2014; 16: 1184
 - 16i Zhang B, Ge C, Yao J, Liu Y, Xie H, Fang J. J. Am. Chem. Soc. 2015; 137: 757
 - 17a Ferguson J, Zeng F, Alper H. Org. Lett. 2012; 14: 5602
 - 17b Seoane A, Casanova N, Quiñones N, Mascareñas JL, Gulías M. J. Am. Chem. Soc. 2014; 136: 834
 - 17c Liu X.-G, Zhang S.-S, Jiang C.-Y, Wu J.-Q, Li Q, Wang H. Org. Lett. 2015; 17: 5404
 - 18a Luo S, Luo F.-X, Zhang X.-S, Shi Z.-J. Angew. Chem. Int. Ed. 2013; 52: 10598
 - 18b Lee T.-H, Jayakumar J, Cheng C.-H, Chuang S.-C. Chem. Commun. 2013; 49: 11797
 - 18c Inamoto K, Kadokawa J, Kondo Y. Org. Lett. 2013; 15: 3962
 - 18d Shin Y, Yoo C, Moon Y, Lee Y, Hong S. Chem. Asian J. 2015; 10: 878
 - 18e Zhang J, Zhang X, Fan X. J. Org. Chem. 2016; 81: 3206
 - 19 Sasano K, Takaya J, Iwasawa N. J. Am. Chem. Soc. 2013; 135: 10954
 - 20 Zhang W.-Z, Yang M.-W, Lu X.-B. Green Chem. 2016; 18: 4181
 - 21a Sakurai H, Shirahata A, Hosomi A. Tetrahedron Lett. 1980; 21: 1967
 - 21b Hirai Y, Aida T, Inoue S. J. Am. Chem. Soc. 1989; 111: 3062
 - 21c Beckman EJ, Munshi P. Green Chem. 2011; 13: 376
 - 21d Van Ausdall BR, Poth NF, Kincaid VA, Arif AM, Louie J. J. Org. Chem. 2011; 76: 8413
 - 21e Kikuchi S, Sekine K, Ishida T, Yamada T. Angew. Chem. Int. Ed. 2012; 51: 6989
 - 21f Sekine K, Takayanagi A, Kikuchi S, Yamada T. Chem. Commun. 2013; 49: 11320
 - 21g Shi J, Jiang Y, Jiang Z, Wang X, Wang X, Zhang S, Han P, Yang C. Chem. Soc. Rev. 2015; 44: 5981
 - 21h Zhang WZ, Liu S, Lu XB. Beilstein J. Org. Chem. 2015; 11: 906
 - 22 Zhang Z, Ju T, Miao M, Han J.-L, Zhang Y.-H, Zhu X.-Y, Ye J.-H, Yu D.-G, Zhi Y.-G. Org. Lett. 2017; 19: 396
 - 23a Okubo T, Yoshikawa R, Chaki S, Okuyama S, Nakazato A. Bioorg. Med. Chem. 2004; 12: 423
 - 23b Hanson SM, Morlock EV, Satyshur KA. J. Med. Chem. 2008; 51: 7243
 - 23c Véron J.-B, Allouchi H, Enguehard-Gueiffier C, Snoeck R, Andrei G, De Clercq E, Gueiffier A. Bioorg. Med. Chem. 2008; 16: 9536
 - 23d Wiegand MH. Drugs 2008; 68: 2411
 - 23e Gallud A, Vaillant O, Maillard LT, Arama DP, Dubois J, Maynadier M, Lisowski V, Garcia M, Martinez J, Masurier N. Eur. J. Med. Chem. 2014; 75: 382
 - 23f Meng T, Wang W, Zhang Z, Ma L, Zhang Y, Miao Z, Shen J. Bioorg. Med. Chem. 2014; 22: 848
 
For pioneering works of Heck, see:
For recent reviews, see:
For selected reviews, see:
For recent examples, see:
For reviews on transformation of CO2, see:
For selected examples, see: