Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000084.xml
Synthesis 2017; 49(18): 4303-4308
DOI: 10.1055/s-0036-1588460
DOI: 10.1055/s-0036-1588460
paper
Synthesis of O-Aroyl-N,N-dimethylhydroxylamines through Hypervalent Iodine-Mediated Amination of Carboxylic Acids with N,N-Dimethylformamide
We are grateful to the National Natural Science Foundation of China (NSFC, No. 21302046) and the Hundred-Talent Program Fund of Hubei University of Technology for financial support.Further Information
Publication History
Received: 28 March 2017
Accepted after revision: 19 May 2017
Publication Date:
03 July 2017 (online)
Abstract
An efficient protocol for the synthesis of O-aroyl-N,N-dimethylhydroxylamines, which are important electrophilic amination reagents, is described. The reaction between carboxylic acids and N,N-dimethylformamide is mediated by hypervalent iodine and occurs under mild conditions at room temperature to give the desired products in good yields. The process shows good functional group compatibility and air and moisture tolerance.
Key words
benzoyl hydroxylamine - hypervalent iodine - carboxylic acids - N,N-dimethylformamide - aminationSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0036-1588460.
- Supporting Information
-
References
- 1a Amino Group Chemistry, From Synthesis to the Life Sciences. Ricci A. Wiley-VCH; Weinheim: 2007
- 1b Hili R. Yudin AK. Nat. Chem. Biol. 2006; 2: 284
- 1c Lawrence SA. Amines: Synthesis Properties and Applications . Cambridge University Press; Cambridge: 2004: 265-305
- 1d Subramanian P. Rudolf GC. Kaliappan KP. Chem. Asian J. 2016; 11: 168
- 2a Collet F. Lescot C. Dauban P. Chem. Soc. Rev. 2011; 40: 1926
- 2b Cho SH. Kim JY. Kwak J. Chang S. Chem. Soc. Rev. 2011; 40: 5068
- 2c Ramirez TA. Zhao B. Shi Y. Chem. Soc. Rev. 2012; 41: 931
- 2d Jeffrey JL. Sarpong R. Chem. Sci. 2013; 4: 4092
- 2e Thirunavukkarasu VS. Kozhushkov SI. Ackermann L. Chem. Commun. 2014; 50: 29
- 2f Intrieri D. Zardi P. Caselli A. Gallo E. Chem. Commun. 2014; 50: 11440
- 2g Louillat M.-L. Patureau FW. Chem. Soc. Rev. 2014; 43: 901
- 2h Kim H. Chang S. ACS Catal. 2016; 6: 2341
- 2i Jiao J. Murakami K. Itami K. ACS Catal. 2016; 6: 610
- 2j Marín M. Rama RJ. Nicasio MC. Chem. Rec. 2016; 16: 1819
- 3a Corpet M. Gosmini C. Synthesis 2014; 46: 2258
- 3b Yan X. Yang X. Xi C. Catal. Sci. Technol. 2014; 4: 4169
- 3c Barker TJ. Jarvo ER. Synthesis 2011; 3954
- 3d Dembech P. Seconi G. Ricci A. Chem. Eur. J. 2000; 6: 1281
- 4 Berman AM. Johnson JS. J. Am. Chem. Soc. 2004; 126: 5680
- 5a Matsuda N. Hirano K. Satoh T. Miura M. Org. Lett. 2011; 13: 2860
- 5b Hirano K. Satoh T. Miura M. Org. Lett. 2011; 13: 2395
- 5c Matsuda N. Hirano K. Satoh T. Miura M. Angew. Chem. Int. Ed. 2012; 51: 3642
- 5d Matsuda N. Hirano K. Satoh T. Miura M. Angew. Chem. Int. Ed. 2012; 51: 11827
- 5e Miki Y. Hirano K. Satoh T. Miura M. Angew. Chem. Int. Ed. 2013; 52: 10830
- 5f Yan X. Chen C. Zhou Y. Xi C. Org. Lett. 2012; 14: 4750
- 5g Nguyen MH. Smith AB. III. Org. Lett. 2013; 15: 4872
- 5h Dong Z. Dong G. J. Am. Chem. Soc. 2013; 135: 18350
- 5i Rucker RP. Whittaker AM. Dang H. Lalic G. Angew. Chem. Int. Ed. 2012; 51: 3953
- 5j Zhu S. Niljianskul N. Buchwald SL. J. Am. Chem. Soc. 2013; 135: 15746
- 5k McDonald SL. Wang Q. Angew. Chem. Int. Ed. 2014; 53: 1867
- 5l McDonald SL. Hendrick CE. Wang Q. Angew. Chem. Int. Ed. 2014; 53: 4667
- 5m Zhu S. Buchwald SL. J. Am. Chem. Soc. 2014; 136: 15913
- 5n García-López J.-A. Çetin M. Greaney MF. Angew. Chem. Int. Ed. 2015; 54: 2156
- 5o McDonald SL. Wang Q. Chem. Commun. 2014; 50: 2535
- 5p Shen K. Wang Q. Chem. Sci. 2015; 6: 4279
- 5q Sakae R. Hirano K. Miura M. J. Am. Chem. Soc. 2015; 137: 6460
- 5r Yang Y. Shi S.-L. Niu D. Liu P. Buchwald SL. Science 2015; 349: 62
- 5s Yoon H. Lee Y. J. Org. Chem. 2015; 80: 10244
- 5t Zhou S. Yang Z. Chen X. Li Y. Zhang L. Fang H. Wang W. Zhu X. Wang S. J. Org. Chem. 2015; 80: 6323
- 5u Xi Y. Butcher TW. Zhang J. Hartwig JF. Angew. Chem. Int. Ed. 2016; 55: 776
- 5v Hemric BN. Shen K. Wang Q. J. Am. Chem. Soc. 2016; 138: 5813
- 5w Ren S. Song S. Ye L. Feng C. Loh T.-P. Chem. Commun. 2016; 52: 10373
- 5x For a recent review, see: Dong X. Liu Q. Dong Y. Liu H. Chem. Eur. J. 2017; 11: 2481
- 6 Berman AM. Johnson JS. J. Org. Chem. 2006; 71: 219
- 7a White EH. Reefer J. Erickson RH. Dzadzic PM. J. Org. Chem. 1984; 49: 4872
- 7b Ikbal M. Jana A. Singh ND. P. Banerjee R. Dhara D. Tetrahedron 2011; 67: 3733
- 8a Wang Y. Wang Y. Guo Z. Zhang Q. Li D. Asian J. Org. Chem. 2016; 5: 1438
- 8b Wang Y. Wang Y. Zhang Q. Li D. Org. Chem. Front. 2017; 4: 514
- 9 See the Supporting Information for more detailed results.
- 11a Liu Z. Zhang J. Chen S. Shi E. Xu Y. Wan X. Angew. Chem. Int. Ed. 2012; 51: 3231
- 11b Li H. Xie J. Xue Q. Cheng Y. Zhu C. Tetrahedron Lett. 2012; 53: 6479
- 11c Xu K. Hu Y. Zhang S. Zha Z. Wang Z. Chem. Eur. J. 2012; 18: 9793
- 11d Gao L. Tang H. Wang Z. Chem. Commun. 2014; 4085
- 11e Feng J.-B. Wei D. Gong J.-L. Qi X. Wu X.-F. Tetrahedron Lett. 2014; 55: 5082
- 11f Zard SZ. Chem. Soc. Rev. 2008; 37: 1603
- 11g Xiong T. Zhang Q. Chem. Soc. Rev. 2016; 45: 3069
- 12a Muraki T. Togo H. Yokoyama M. J. Chem. Soc., Perkin Trans. 1 1999; 1713
- 12b Togo H. Muraki T. Hoshina Y. Yamaguchi K. Yokoyama M. J. Chem. Soc., Perkin Trans. 1 1997; 787
- 12c Li J. Chen H. Zhang-Negrerie D. Du Y. Zhao K. RSC Adv. 2013; 3: 4311
- 13a Kumar PS. Kumar GS. Kumar RA. Reddy NV. Reddy R. Eur. J. Org. Chem. 2013; 1218
- 13b Xie Y.-X. Song R.-J. Yang X.-H. Xiang J.-N. Li J.-H. Eur. J. Org. Chem. 2013; 5737
- 13c Priyadarshini S. Joseph PJ. A. Kantam ML. RSC Adv. 2013; 3: 18283
- 13d Bi X. Li J. Shi E. Wang H. Gao R. Xiao J. Tetrahedron 2016; 72: 8210
- 13e Bannwart L. Abele S. Tortoioli S. Synthesis 2016; 48: 2069
For selected recent examples, see:
For reviews on nitrogen-centered radicals, see: