Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2017; 28(16): 2194-2198
DOI: 10.1055/s-0036-1588475
DOI: 10.1055/s-0036-1588475
letter
A Highly Efficient Gold(I)-Catalyzed Mukaiyama–Mannich Reaction of α-Amino Sulfones with Fluorinated Silyl Enol Ethers To Give β-Amino α-Fluorinated Ketones
Financial support from the 973 program (2015CB856600) and National Natural Science Foundation of China (21472049) is appreciated.Further Information
Publication History
Received: 12 March 2017
Accepted after revision: 22 May 2017
Publication Date:
12 July 2017 (online)
◊ These authors contributed equally to this work
Abstract
Ph3PAuOTf was identified as a powerful catalyst for the Mukaiyama–Mannich reaction of fluorinated silyl enol ethers with α-amino sulfones. This provides ready access to β-amino α-fluorinated ketones in good to excellent yields.
Key words
Mukaiyama–Mannich reaction - fluorinated silyl enol ethers - amino sulfones - amino fluorinated ketones - gold catalysisSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0036-1588475.
- Supporting Information
-
References and Notes
- 1a Kobayashi S. Mori Y. Fossey JS. Salter MM. Chem. Rev. 2011; 111: 2626
- 1b Kumagai N. Shibasaki M. Bull. Chem. Soc. Jpn. 2015; 88: 503
- 2a Petrini M. Chem. Rev. 2005; 105: 3949
- 2b Monleón A. Synlett 2013; 24: 529
- 3a Weygand F. Steglich W. Oettmeier W. Chem. Ber. 1970; 103: 818
- 3b Mecozzi T. Petrini M. J. Org. Chem. 1999; 64: 8970
- 3c Dahmen S. Bräse S. J. Am. Chem. Soc. 2002; 124: 5940
- 3d Song J. Shih H.-W. Deng L. Org. Lett. 2007; 9: 603
- 3e Palomo C. Oiarbide M. Laso A. López R. J. Am. Chem. Soc. 2005; 127: 17622
- 3f Fini F. Sgarzani V. Pettersen D. Herrera RP. Bernardi L. Ricci A. Angew. Chem. Int. Ed. 2005; 44: 7975 ; and references cited therein
- 4a Ollevier T. Nadeau E. Eguillon J.-C. Adv. Synth. Catal. 2006; 348: 2080
- 4b Ollevier T. Li Z. Org. Biomol. Chem. 2006; 4: 4440
- 4c Ollevier T. Li Z. Adv. Synth. Catal. 2009; 351: 3251
- 4d Das B. Damodar K. Saritha D. Chowdhury N. Krishnaiah M. Tetrahedron Lett. 2007; 48: 7930
- 4e Kumar RS. C. Reddy GV. Babu KS. Rao JM. Chem. Lett. 2009; 38: 564
- 4f Thirupathi P. Kim SS. Tetrahedron 2010; 66: 8623
- 4g Cao Z.-Y. Zhang Y. Ji C.-B. Zhou J. Org. Lett. 2011; 13: 6398
- 4h Lee S.-H. Kadam ST. Bull. Korean Chem. Soc. 2011; 32: 3738
- 4i Wang Q. Leutzsch M. van Gemmeren M. List B. J. Am. Chem. Soc. 2013; 135: 15334
- 5a Giardinà A. Mecozzi T. Petrini M. J. Org. Chem. 2000; 65: 8277
- 5b Schunk S. Enders D. Org. Lett. 2001; 3: 3177
- 5c Enders D. Oberbörsch S. Synlett 2002; 0471
- 5d Petrini M. Torregiani E. Tetrahedron Lett. 2005; 46: 5999
- 6a Decostanzi M. Campagne J.-M. Leclerc E. Org. Biomol. Chem. 2015; 13: 7351
- 6b Kodama Y. Okumura M. Yanabu N. Taguchi T. Tetrahedron Lett. 1996; 37: 1061
- 6c Jonet S. Cherouvrier F. Brigaud T. Portella C. Eur. J. Org. Chem. 2005; 4304
- 6d Chu L. Zhang X. Qing F.-L. Org. Lett. 2009; 11: 2197
- 6e Yuan Z. Wei Y. Shi M. Chin. J. Chem. 2010; 28: 1709
- 6f Yuan Z. Mei L. Wei Y. Shi M. Kattamuri PV. McDowell P. Li G. Org. Biomol. Chem. 2012; 10: 2509
- 6g Kashikura W. Mori K. Akiyama T. Org. Lett. 2011; 13: 1860
- 6h Chorki F. Grellepois F. Crousse B. Ourévitch M. Bonnet-Delpon D. Bégué J.-P. J. Org. Chem. 2001; 66: 7858
- 6i Lefebvre O. Brigaud T. Portella C. J. Org. Chem. 2001; 66: 1941
- 6j Decostanzi M. Godemert J. Oudeyer S. Levacher V. Campagne J.-M. Leclerc E. Adv. Synth. Catal. 2016; 358: 526
- 6k Guo Y. Shreeve J.-M. Chem. Commun. 2007; 3583
- 6l Uneyama K. Tanaka H. Kobayashi S. Shioyama M. Amii H. Org. Lett. 2004; 6: 2733
- 6m Bélanger É. Cantin K. Messe O. Tremblay M. Paquin J.-F. J. Am. Chem. Soc. 2007; 129: 1034
- 7a Pesenti C. Viani F. ChemBioChem 2004; 5: 590
- 7b Liu Y.-L. Yu J.-S. Zhou J. Asian J. Org. Chem. 2013; 2: 194
- 7c Lin J.-H. Xiao J.-C. Tetrahedron Lett. 2014; 55: 6147
- 7d Ni C. Zhu L. Hu J. Acta Chim. Sinica 2015; 73: 90
- 7e Champagne PA. Desroches J. Hamel J.-D. Vandamme M. Paquin J.-F. Chem. Rev. 2015; 115: 9073
- 8a Uoto K. Ohsuki S. Takenoshita H. Ishiyama T. Iimura S. Hirota Y. Mitsui I. Terasawa H. Soga T. Chem. Pharm. Bull. 1997; 45: 1793
- 8b Nakayama K. Kawato HC. Inagaki H. Nakajima R. Kitamura A. Someya K. Ohta T. Org. Lett. 2000; 2: 977
- 8c Cholongitas E. Papatheodoridis GV. Ann. Gastroenterol. 2014; 27: 331
- 9a Liu Y.-L. Zhou J. Chem. Commun. 2012; 48: 1919
- 9b Liu Y.-L. Liao F.-M. Niu Y.-F. Zhao X.-L. Zhou J. Org. Chem. Front. 2014; 1: 742
- 9c Liu Y.-L. Zeng X.-P. Zhou J. Acta Chim. Sinica 2012; 70: 1451
- 9d Yu J.-S. Liu Y.-L. Tang J. Wang X. Zhou J. Angew. Chem. Int. Ed. 2014; 53: 9512
- 9e Liao F.-M. Liu Y.-L. Yu J.-S. Zhou F. Zhou J. Org. Biomol. Chem. 2015; 13: 8906
- 9f Yu J.-S. Zhou J. Org. Biomol. Chem. 2015; 13: 10968
- 9g Yu J.-S. Zhou J. Org. Chem. Front. 2016; 3: 298
- 9h Yu J.-S. Liao F.-M. Gao W.-M. Liao K. Zuo R.-L. Zhou J. Angew. Chem. Int. Ed. 2015; 54: 7381
- 9i Zeng X.-P. Zhou J. J. Am. Chem. Soc. 2016; 138: 8730
- 9j Liao F.-M. Cao Z.-Y. Yu J.-S. Zhou J. Angew. Chem. Int. Ed. 2017; 56: 2459
- 10a Amii H. Kobayashi T. Hatamoto Y. Uneyama K. Chem. Commun. 1999; 1323
- 10b Amii H. Kobayashi T. Terasawa H. Uneyama K. Org. Lett. 2001; 3: 3103
- 10c Huguenot F. Billac A. Brigaud T. Portella C. J. Org. Chem. 2008; 73: 2564
- 10d Prakash GK. S. Hu J. Olah GA. J. Fluorine Chem. 2001; 112: 355
- 11a Hashmi AS. K. Chem. Rev. 2007; 107: 3180
- 11b Bongers N. Krause N. Angew. Chem. Int. Ed. 2008; 47: 2178
- 11c Arcadi A. Chem. Rev. 2008; 108: 3266
- 11d Zhang L. Acc. Chem. Res. 2014; 47: 877
- 11e Fürstner A. Acc. Chem. Res. 2014; 47: 925
- 11f Wei F. Song CL. Ma L. Zhou Y.-D. Tung C.-H. Xu Z.-H. Sci. Bull. 2015; 60: 1479
- 12a Ito Y. Sawamura M. Hayashi T. J. Am. Chem. Soc. 1986; 108: 6405
- 12b Pastor SD. Togni A. J. Am. Chem. Soc. 1989; 111: 2333
- 12c Hayashi T. Kishi E. Soloshonok VA. Uozumi Y. Tetrahedron Lett. 1996; 37: 4969
- 12d Melhado AD. Amarante GW. Wang ZJ. Luparia M. Toste FD. J. Am. Chem. Soc. 2011; 133: 3517
- 12e Lin C.-C. Teng T.-M. Tsai C.-C. Liao H.-Y. Liu R.-S. J. Am. Chem. Soc. 2008; 130: 16417
- 12f Martín-Rodríguez M. Nájera C. Sansano JM. de Cózar A. Cossío FP. Chem. Eur. J. 2011; 17: 14224
- 12g Padilla S. Adrio J. Carretero JC. J. Org. Chem. 2012; 77: 4161
- 12h Zhang M. Yang H. Zhang Y. Zhu C. Li W. Cheng Y. Hu H. Chem. Commun. 2011; 47: 6605
- 12i Jagdale AR. Park JH. Youn SW. J. Org. Chem. 2011; 76: 7204
- 12j Liu B. Li K.-N. Luo S.-W. Huang J.-Z. Pang H. Gong L.-Z. J. Am. Chem. Soc. 2013; 135: 3323
- 12k Shu C. Wang Y.-H. Zhou B. Li X.-L. Ping Y.-F. Lu X. Ye L.-W. J. Am. Chem. Soc. 2015; 137: 9567
- 13a Nishizawa M. Imagawa H. Yamamoto H. Org. Biomol. Chem. 2010; 8: 511
- 13b Zhou F. Cao Z.-Y. Zhang J. Yang H.-B. Zhou J. Chem. Asian J. 2012; 7: 233
- 13c Cao Z.-Y. Zhou F. Yu Y.-H. Zhou J. Org. Lett. 2013; 15: 42
- 13d Cao Z.-Y. Jiang J.-S. Zhou J. Org. Biomol. Chem. 2016; 14: 5500
- 14 For Au-catalyzed Mannich reactions, see Refs. 12c and 12d.
- 15 Because Bi(OTf)3 was slightly inferior to Ph3PAuOTf in terms of the yield of 3a (Table 1), we also examined its performance in other solvents, such as ethyl acetate, toluene, or MeCN, but no better result was obtained (the yields of 3a were 21, 55, and 58%, respectively). When Bi(OTf)3 was used to mediate the reaction of the aliphatic aldehyde-derived sulfones 1k and 1l, the desired products 3k and 3l were obtained in 15 and 10% yield, respectively, which were much lower than those obtained by using the Au(I) catalyst.
- 16 tert-Butyl (2,2-Difluoro-3-oxo-1,3-diphenylpropyl)carbamate (3a); Typical Procedure Under N2, a 25 mL dry Schleck tube was charged with Ph3PAuCl (0.0075 mmol, 3.7 mg) and AgOTf (0.0075 mmol, 1.9 mg), followed by anhyd DCE (2.5 mL). The solution was stirred at r.t. for about 15 min, and then the α-amino sulfone 1a (0.25 mmol) and the fluorinated silyl enol ether 2a (0.375 mmol) were added sequentially. The mixture was stirred at r.t. until 1a was fully converted (TLC), and then purified directly by flash column chromatography to give a white solid; yield: 80.4 mg (89%); mp 136–138 °C. 1H NMR (300 MHz, CDCl3): δ = 8.01–7.98 (m, 2 H), 7.65–7.60 (m, 1 H), 7.50–7.45 (m, 2 H), 7.36–7.34 (m, 5 H), 5.62–5.54 (m, 2 H), 1.40 (s, 9 H). 19F NMR (282 MHz, CDCl3): δ = –105.86 (d, J F–F = 275.8 Hz, 1 F), –107.06 (d, J F–F = 275.2 Hz, 1 F). 13C NMR (100 MHz, CDCl3): δ =188.88 (t, J C–F = 28.5 Hz), 154.70, 134.37, 133.90, 132.34 (t, J C–F = 1.9 Hz), 129.83 (t, J C–F = 3.5 Hz), 128.67, 128.56, 128.36, 116.78 (t, J C–F = 258.3 Hz), 80.47, 57.08 (t, J C–F = 24.5 Hz), 28.14.
For reviews, see:
For reviews of α-amino sulfones:
For base-mediated examples, see:
For selected examples of the use of catalytic amounts of Lewis acids:
For a review, see:
For Mannich-type reactions, see:
For aldol reactions, see:
For cross-coupling reactions, see:
For allylation, see:
For reviews, see:
For selected reviews on gold catalysis:
For selected examples of Au(I) as a σ-Lewis acid catalyst, see:
For reviews, see:
For our efforts on Hg(II) catalysis, see: