Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2017; 28(16): 2159-2162
DOI: 10.1055/s-0036-1588479
DOI: 10.1055/s-0036-1588479
letter
AlCl3-Catalyzed Intramolecular Hydroarylation of Arenes with Alkynes
We greatly acknowledge the financial support from International Science & Technology Cooperation Program of China (2014DFE40130).Further Information
Publication History
Received: 10 April 2017
Accepted after revision: 28 May 2017
Publication Date:
06 July 2017 (online)
◊These authors contributed equally to this work
Abstract
Herein, we wish to report the main-group metal Lewis acid catalyzed intramolecular hydroarylation of arenes with alkynes. This cyclization proceeds efficiently in the presence of a catalytic amount of AlCl3, affording phenanthrenes in moderate to excellent yields. The catalyst is cheap and nontoxic. The functional-group tolerance is high. A plausible electrophilic aromatic substitution reaction mechanism is proposed for this transformation.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0036-1588479.
- Supporting Information
-
References and Notes
- 1a Yoshikawa K. Ito T. Iseki K. Baba C. Imagawa H. Yagi Y. Morita H. Asakawa Y. Kawano S. Hashimoto T. J. Nat. Prod. 2012; 75: 605
- 1b Song S. Li X. Guo J. Hao C. Feng Y. Guo B. Liu T. Zhang Q. Zhang Z. Li R. Wang J. Lin B. Li F. Zhao D. Cheng M. Org. Biomol. Chem. 2015; 3803
- 1c Zhou X. Zheng C. Gan L. Chen G. Zhang X. Song X. Li G. Sunnd C. J. Nat. Prod. 2016; 79: 1791
- 2a Machado A. Munaro M. Martins T. Dávila L. Giro R. Caldas M. Atvars T. Akcelrud L. Macromolecules 2006; 39: 3398
- 2b Jin Y. Kim Y. Kim S. Song S. Woo H. Lee K. Suh H. Macromolecules 2008; 41: 5548
- 2c Vanormelingen W. Smeets A. Franz E. Asselberghs I. Clays K. Verbiest T. Koeckelberghs G. Macromolecules 2009; 42: 4282
- 3 Fürstner A. Mamane V. Chem. Commun. 2003; 2112
- 4 Chernyak N. Gevorgyan V. J. Am. Chem. Soc. 2008; 130: 5636
- 5 Pascual S. Bour C. Mendoza P. Echavarren A. Beilstein J. Org. Chem. 2011; 7: 1520
- 6a Jin R. Chen Y. Liu W. Xu D. Li Y. Ding A. Guo H. Chem. Commun. 2016; 52: 9909
- 6b Jin R. Chen J. Chen Y. Liu W. Xu D. Li Y. Ding A. Guo H. J. Org. Chem. 2016; 81: 12553
- 7 Xu D. Jin R. Liu W. Ba F. Li Y. Ding A. Guo H. Tetrahedron Lett. 2016; 57: 3235
- 8a Yang Y. Kou Y. Chem. Commun. 2004; 226
- 8b Kobayashi S. Busujima T. Nagayama S. Chem. Eur. J. 2006; 6: 3491
- 8c Ahmed I. Nayl A. Daoud J. J. Saudi Chem. Soc. 2016; 20: 280
- 9a Wei Y. Wang S. Zhou S. Dalton Trans. 2016; 45: 4471
- 9b Barot K. Manna K. Ghate M. J. Saudi Chem. Soc. 2017; 21: 35
- 10a Kangani C. Day B. Org. Lett. 2008; 10: 2645
- 10b Jiang M. Shi M. Org. Lett. 2008; 11: 2239
- 10c Simelane S. Kinfe H. Muller A. Williams D. Org. Lett. 2014; 16: 4543
- 10d Safari J. Akbari Z. Naseh S. J. Saudi Chem. Soc. 2016; 20: 250
- 11 General Procedure for the Synthesis of 9-(4-Methoxyphenyl)phenanthrene (2a) To a 25 mL glass tube was added 1a (114 mg, 0.4 mmol), AlCl3 (3 mg, 0.02 mmol), and anhydrous CH2Cl2 (6 mL). The mixture was stirred at r.t. under argon atmosphere. The reaction was completed after 3 h as monitored by TLC (eluent: PE–EtOAc = 50:1). The solvent was removed, and the residue was purified by flash chromatography on silica gel (eluent: PE) to afford 2a as a solid (108 mg, 94%). 1H NMR (400 MHz, CDCl3): δ = 8.77 (d, J = 8.4 Hz, 1 H), 8.71 (d, J = 8.4 Hz, 1 H), 7.94 (d, J = 8.0 Hz, 1 H), 7.88 (d, J = 7.6 Hz, 1 H), 7.68–7.57 (m, 4 H), 7.53 (t, J = 7.4 Hz, 1 H), 7.47 (d, J = 8.8 Hz, 2 H), 7.05 (d, J = 8.4 Hz, 2 H), 3.91 (s, 3 H).
- 12 Olah GA. Kuhn SJ. Flood SH. J. Am. Chem. Soc. 1962; 84: 1688
- 13 Lee I. Chem. Soc. Rev. 1995; 24: 223
- 14 Hubig SM. Kochi JK. J. Am. Chem. Soc. 2000; 122: 8279