Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2017; 28(19): 2675-2679
DOI: 10.1055/s-0036-1588533
DOI: 10.1055/s-0036-1588533
letter
Synthesis of Cyanamides from Cyanogen Bromide under Mild Conditions through N-Cyanation of Allylic Tertiary Amines
The authors are grateful to the National Natural Science Foundation of China (Grant NO.21576026) and the Joint Fund of the National Natural Science Foundation of China and the China Academy of Engineering Physics (Grant NO.11176004) for financial support.Further Information
Publication History
Received: 05 June 2017
Accepted after revision: 09 July 2017
Publication Date:
17 August 2017 (online)
Abstract
Cyanamides were selectively formed through a one-step nucleophilic substitution reaction of allylic tertiary amines with cyanogen bromide. Because of the mild reaction conditions and good yields of the reaction, as well as the commercial availability of the starting materials, this new method represents a valuable tool for the synthesis of cyanamides through an N-deallylation reaction and an N-cyanation reaction in one pot.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0036-1588533.
- Supporting Information
-
References and Notes
- 1a Anbarasan P. Neumann H. Beller M. Angew. Chem. Int. Ed. 2011; 50: 519
- 1b Anbarasan P. Neumann H. Beller M. Chem. Eur. J. 2011; 17: 4217
- 1c Gong T.-J. Xiao B. Cheng W.-M. Su W. Xu J. Liu Z.-J. Liu L. Fu Y. Bonaga J. Am. Chem. Soc. 2013; 135: 10630
- 1d Boñaga LV. R. Zhang H.-C. Maryanoff BE. Chem. Commun. 2004; 2394
- 1e Soo HS. Figueroa JS. Cummins CC. J. Am. Chem. Soc. 2004; 126: 11370
- 1f Larraufie M.-H. Ollivier C. Fensterbank L. Malacria M. Lacôte E. Angew. Chem. Int. Ed. 2010; 49: 2178
- 1g Nekrasov DD. Russ. J. Org. Chem. 2004; 40: 1387
- 1h Maestri G. Larraufie M.-H. Ollivier C. Malacria M. Fensterbank L. Lacôte E. Org. Lett. 2012; 14: 5538
- 1i Larraufie M.-H. Maestri G. Malacria M. Ollivier C. Fensterbank L. Lacôte E. Synthesis 2012; 44: 1279
- 1j Wang C. Wang D. Xu F. Pan B. Wan B. J. Org. Chem. 2013; 78: 3065
- 2a Miyasaka H. Clérac R. Campos-Fernádez CS. Dubner KR. Inorg. Chem. 2001; 40: 1663
- 2b Pombeiro AJ. L. Inorg. Chim. Acta 1992; 198–200: 179
- 3 Yu H. Qin Z. Dai H. Zhang X. Qin X. Wang T. Fang J. ARKIVOC 2008; (xvi): : 99
- 4 Wada S. Toyota K. Takada A. J. Nematol. 2011; 43: 1
- 5a Yang W.-C. Li J. Li J. Chen Q. Yang G.-F. Bioorg. Med. Chem. Lett. 2012; 22: 1455
- 5b Zhang L. Peng X.-M. Damu GL. V. Geng R.-X. Zhou C.-H. Med. Res. Rev. 2014; 34: 340
- 6 Feldman PL. Brackeen MF. Cowan DJ. Marron BE. Schoenen FJ. Stafford JA. Suh EM. Domanico PL. Rose D. Leesnitzer MA. Brawly ES. Strickland AB. Verghese MW. Connolly KM. Bateman-Fite R. Noel LS. Sekut L. Stimpson SA. J. Med. Chem. 1995; 38: 1505
- 7a Goldberg K. Clarke DS. Scott JS. Tetrahedron Lett. 2014; 55: 4433
- 7b Paciaroni NG. Ratnayake R. Matthews JH. Norwood VM. IV. Arnold AC. Dang LH. Luesch H. Huigens III RW. Chem. Eur. J. 2017; 23: 4327
- 7c Fukumoto K. Oya T. Itazaki M. Nakazawa H. J. Am. Chem. Soc. 2009; 131: 38
- 7d Teng F. Yu J.-T. Zhou Z. Chu H. Cheng J. J. Org. Chem. 2015; 80: 2822
- 7e Servais A. Azzouz M. Lopes D. Courillon C. Malacria M. Angew. Chem. Int. Ed. 2007; 46: 576
- 7f Hashimoto T. Ishii S. Yano R. Miura H. Sakata K. Takeuchi R. Adv. Synth. Catal. 2015; 357: 3901
- 7g Hume WE. Shingaki T. Takashima T. Hashizume Y. Okauchi T. Katayama Y. Hayashinaka E. Wada Y. Kusuhara H. Sugiyama Y. Watanabe Y. Bioorg. Med. Chem. 2013; 21: 7584
- 7h Teng F. Yu J.-T. Jiang Y. Yang H. Cheng J. Chem. Commun. 2014; 50: 8412
- 8a For a review on the preparation of cyanamides from amides, see: Zhang M. Sheng W. Ji P. Liu Y. Guo C. RSC Adv. 2015; 5: 56438 ; see also ref. 1
- 9a Dunsford JJ. Camp JE. Tetrahedron Lett. 2013; 54: 4522
- 9b Ayres JN. Ling KB. Morrill LC. Org. Lett. 2016; 18: 5528
- 10 Krompiec S. Krompiec M. Penczek R. Ignasiak H. Coord. Chem. Rev. 2008; 252: 1819
- 11a Oie H. Sudo A. Endo T. J. Polym. Sci. Polym. 2013; 51: 2035
- 11b Lin CH. Wong TI. Wang MW. Chang HC. Juang TY. J. Polym. Sci. Polym. Chem. Ed. 2015; 53: 513
- 11c Wang H. Schröder N. Glorius F. Angew. Chem. Int. Ed. 2013; 52: 5386
- 11d Manoharan M. Lu Y. Casper MD. Just G. Org. Lett. 2000; 2: 243
- 11e Kitov PI. Bundle DR. Org. Lett. 2001; 3: 2835
- 12a Garro-Helions F. Merzouk A. Guibe F. J. Org. Chem. 1993; 58: 6109
- 12b Hiraki K. Matsunaga T. Kawano H. Organometallics 1994; 13: 1878
- 12c Lemaire-Audoire S. Savignac M. Genêt JP. Bernard J.-M. Tetrahedron Lett. 1995; 36: 1267
- 12d Taniguchi T. Ogasawara K. Tetrahedron Lett. 1998; 39: 4679
- 12e Alcaide B. Almendros P. Alonso JM. Aly MF. Org. Lett. 2001; 3: 3781
- 12f Vutukuri DR. Bharathi P. Yu Z. Rajasekaran K. Tran M.-H. Thayumanavan S. J. Org. Chem. 2003; 68: 1146
- 12g Alcaide B. Almendros P. Alonso JM. Chem. Eur. J. 2003; 9: 5793
- 12h Alcaide B. Almendros P. Alonso JM. Tetrahedron Lett. 2003; 44: 8693
- 12i Krompiec S. Pigulla M. Krompiec M. Baj S. Mrowiec-Białoń J. Kasperczyk J. Tetrahedron Lett. 2004; 45: 5257
- 12j Kamijo S. Huo Z. Jin T. Kanazawa C. Yamamoto Y. J. Org. Chem. 2005; 70: 6389
- 12k Krompiec S. Pigulla M. Krompiec M. Marciniec B. Chadyniak D. J. Mol. Catal. A: Chem. 2005; 237: 17
- 12l Zacuto MJ. Xu F. J. Org. Chem. 2007; 72: 6298
- 12m Cadierno V. Gimeno J. Nebra N. Chem. Eur. J. 2007; 13: 6590
- 12n Kajihara K. Arisawa M. Shuto S. J. Org. Chem. 2008; 73: 9494
- 12o Li T.-S. Jiang J.-H. Chem. Commun. 2009; 7236
- 12p Jana AK. Panda G. RSC Adv. 2013; 3: 16795
- 13 Nandi P. Dye JL. Jackson JE. Tetrahedron Lett. 2009; 50: 3864
- 14 Kumar P. Cherian SK. Jain R. Show K. Tetrahedron Lett. 2014; 55: 7172
- 15 Kapnang H. Charles G. Tetrahedron Lett. 1983; 24: 3233
- 16 Piperidine-1-carbonitrile (1); Typical Procedure BrCN (4.4 mmol) was slowly added to a solution of N-allylpiperidine (4 mmol) in anhyd CHCl3 (5 mL) at r.t. under N2, and the mixture was then stirred for 24 h at r.t. until the reaction was complete (TLC). The mixture was then purified by column chromatography (silica gel, 10% EtOAc–PE) to give a colorless liquid; yield: 0.33 g (75%). IR (film): 2945, 2857, 2210 (C≡N), 1451 cm–1. 1H NMR (600 MHz, CDCl3): δ = 1.47 (m, 2 H), 1.53–1.54 (m, 4 H), 3.06–3.07 (m, 4 H). 13C NMR (150 MHz, CDCl3): δ = 118.6, 50.1, 24.5, 23.0. HRMS (ESI+): m/z [M + Na]+ calcd for C6H10N2Na: 133.073677; found: 133.073619.
- 17 4-Methylpiperazine-1-carbonitrile (10); Typical Procedure Prepared from 1-allyl-4-methylpiperazine (4 mmol) as for compound 1, and purified by column chromatography (silica gel, 2% MeOH–CH2Cl2) to give a colorless liquid; yield: 0.26 g (52%). IR (film): 2943, 2798, 2211 (C≡N), 1452, 1375, 1002, 787 cm–1. 1H NMR (600MHz, CDCl3): δ = 2.19 (s, 3 H), 2.36 (t, J = 5.4, 4.8 Hz, 4 H), 3.14 (t, J = 5.4 Hz, 4 H). 13C NMR (CDCl3, 150 MHz): δ = 117.6, 53.3, 48.9, 46.1. HRMS (ESI+): m/z [M + H]+ calcd for C6H12N3: 126.102620, found 126.102574.
- 18 Dimethylcyanamide (17) Prepared from N,N-dimethylprop-2-en-1-amine (4 mmol) as for compound 1, and purified by column chromatography (silica gel, 10% EtOAc–PE) to give a colorless liquid; yield: 0.20 g, (72%). IR (film): 2971, 2823, 2217 (C≡N), 1455, 1339, 1058, 762 cm–1. 1H NMR (600MHz, CDCl3): δ = 2.75 (s, 6 H). 13C NMR (150 MHz, CDCl3): δ = 119.3, 40.4. HRMS (ESI+): m/z [M + Na]+ calcd for C3H6N2Na: 93.042365; found: 93.042319.
- 19 Bhat RG. Ghosh Y. Chandrasekaran S. Tetrahedron Lett. 2004; 45: 7983
For reviews on cyanamides as building blocks in organic synthesis: see:
For reviews on the preparation of cyanamides from amines, see:
For reviews on the preparation of cyanamides from ketimines, see:
For reviews on transition-metal-catalyzed deprotection of allylic tertiary amines, see: