Synlett 2017; 28(20): 2918-2922
DOI: 10.1055/s-0036-1588558
letter
© Georg Thieme Verlag Stuttgart · New York

Biology-Oriented Synthesis of Decahydro-4,8-epoxyazulene Scaffolds

Zhi-Jun Jia
a   Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany   eMail: herbert.waldmann@mpi-dortmund.mpg.de
b   Chemical Biology, Faculty of Chemistry and Chemical Biology, Technical University Dortmund, Otto-Hahn-Strasse 4a, 44227 Dortmund, Germany
,
Christian Merten
c   Ruhr-Universität Bochum, Lehrstuhl für Organische Chemie II, Universitätsstrasse 150, 44801 Bochum, Germany
,
Lena Knauer
d   Inorganic Chemistry, Faculty of Chemistry and Chemical Biology,Technical University Dortmund, Otto-Hahn-Strasse 6, 44227 Dortmund, Germany
,
Sandip Murarka
e   Department of Chemistry, IIT Jodhpur, Old Residency Road, Ratanada, Jodhpur-342011, Rajasthan, India
,
Carsten Strohmann
d   Inorganic Chemistry, Faculty of Chemistry and Chemical Biology,Technical University Dortmund, Otto-Hahn-Strasse 6, 44227 Dortmund, Germany
,
Herbert Waldmann*
a   Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany   eMail: herbert.waldmann@mpi-dortmund.mpg.de
b   Chemical Biology, Faculty of Chemistry and Chemical Biology, Technical University Dortmund, Otto-Hahn-Strasse 4a, 44227 Dortmund, Germany
› Institutsangaben
C.M. thanks the FCI for a Liebig Fellowship and the Deutsche Forschungsgemeinschaft (DFG) for support through the Cluster of Excellence RESOLV (‘Ruhr Explores Solvation’, EXC 1069). This research was supported by the European Research Council under the Seventh Framework Programme of the European Union (FP7/2007–2013; ERC Grant 268309 to H.W.) and by the Max Planck Society.
Weitere Informationen

Publikationsverlauf

Received: 13. Juni 2017

Accepted after revision: 28. Juli 2017

Publikationsdatum:
23. August 2017 (online)


Dedicated to Victor Snieckus on the occasion of his 80th birthday

Abstract

Guided by the principle of biology-oriented synthesis, a collection of compounds with decahydro-4,8-epoxyazulene scaffold occurring in bioactive natural products was synthesized by the rhodium(II)-catalyzed 1,3-dipolar cycloaddition reaction of pentafulvenes and carbonyl ylides. The products can be obtained in moderate to high yields, with moderate enantioselectivity and excellent diastereoselectivity and regioselectivity.

Supporting Information

 
  • References and Notes

  • 5 Li X.-S. Zhou X.-J. Zhang X.-J. Su J. Li X.-J. Yan Y.-M. Zheng Y.-T. Li Y. Yang L.-M. Cheng Y.-X. J. Nat. Prod. 2011; 74: 1521
  • 6 Daniewski WM. Gumuҟa M. Pankowska E. Ptaszyńska K. Bөszyk E. Jacobsson U. Norin T. Phytochemistry 1993; 32: 1499
  • 7 Luo D.-Q. Wang F. Bian X.-Y. Liu J.-K. J Antibiot. 2005; 58: 456
  • 8 Xu J. Jin D.-Q. Liu C. Xie C. Guo Y. Fang L. J. Agric. Food Chem. 2012; 60: 8051
  • 12 For selected review, see: Preethalayam P. Krishnan KS. Thulasi S. Chand SS. Joseph J. Nair V. Jaroschik F. Radhakrishnan KV. Chem. Rev. 2017; 117: 3930
  • 13 Muthusamy S. Babu SA. Gunanathan C. Suresh E. Dastidar P. Synlett 2001; 1407
  • 14 Dirhodium(II)-Catalyzed 1,3-Dipoar Cycloaddition of Fulvenes 1 and Diazo Derivatives 2 A typical procedure is given for the reaction of fulvene 1a and diazo derivative 2a (Table 1, entry 5). A flame-dried Schlenk tube was charged with Rh2(S-TCPTTL)4 (1.96 mg, 0.001 mmol, 1 mol%) and 4 Å MS (20 mg). Under argon flow, a solution of fulvene 1a (14.62 mg, 0.1 mmol, 1 equiv) in 0.5 mL of α,α,α-trifluorotoluene was added, followed by a solution of the corresponding diazo compound 2a (36.03 mg, 0.15 mmol, 1.5 equiv) in 0.5 mL α,α,α-trifluorotoluene. The reaction mixture was allowed to stir for an additional 1 h. Upon completion monitored by thin-layer chromatography (TLC), the reaction mixture was directly loaded on the silica gel column and was purified by using EtOAc/PE mixture as an eluent to afford the desired compound 3a in 92% yield. 1H NMR (500 MHz, CD2Cl2): δ = 6.59 (dd, J = 5.7, 2.0 Hz, 1 H), 5.72 (dd, J = 5.7, 2.3 Hz, 1 H), 3.73 (d, J = 6.9 Hz, 1 H), 3.47 (d, J = 6.9 Hz, 1 H), 2.72 (ddd, J = 16.5, 11.9, 8.2 Hz, 1 H), 2.45 (dd, J = 16.5, 5.8 Hz, 1 H), 2.42–2.33 (m, 1 H), 2.28 (dd, J = 9.1, 3.2 Hz, 1 H), 2.22–2.12 (m, 2 H), 2.12–1.99 (m, 2 H), 1.68–1.56 (m, 4 H), 1.56–1.43 (m, 11 H), 1.27 (s, 3 H) ppm. 13C NMR (126 MHz, CD2Cl2): δ = 203.38, 166.32, 136.24, 135.29, 134.97, 131.18, 91.02, 84.52, 82.85, 57.77, 49.74, 40.32, 34.31, 33.66, 32.12, 28.44, 28.37, 28.12, 27.10, 22.68 ppm. FT-IR: ν = 2982, 2929, 2855, 2161, 1745, 1722, 1448, 1160 cm–1. HRMS: m/z calcd for [M + Na]+ C22H30O4Na: 381.2036; found: 381.2023. HPLC conditions: CHIRAPAK IC column, (CH2Cl2/EtOH = 100:2)/i-hexane = 30:70, flow rate = 0.5 mL min–1, major enantiomer: t R = 61.3 min; minor enantiomer: t R = 28.2 min, 59% ee.
  • 15 Reaction-conditions screening including adding the diazo substrate by syringe pump over 1 h, temperature, solvents, and the ratio of fulvene and diazo substrate.
  • 16 The structure was confirmed by X-ray crystallographic analysis. CCDC 1552869 contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures. Please see the Supporting Information for details.
  • 17 See details in Supporting Information.