Synthesis 2017; 49(03): 593-603
DOI: 10.1055/s-0036-1588594
paper
© Georg Thieme Verlag Stuttgart · New York

Biphenyl-Based Bis(thiourea) Organocatalyst for Asymmetric and syn-Selective Henry Reaction

Jan Otevrel
Department of Chemical Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, Palackeho 1946/1, 612 42 Brno, Czech Republic   eMail: bobalp@vfu.cz
,
Pavel Bobal*
Department of Chemical Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, Palackeho 1946/1, 612 42 Brno, Czech Republic   eMail: bobalp@vfu.cz
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Received: 21. Juli 2016

Accepted after revision: 25. August 2016

Publikationsdatum:
21. September 2016 (online)


Abstract

A scalable, efficient and chromatography-free synthesis of a new enantiopure C 2-symmetric bis(thiourea) catalyst was accomplished from a readily available starting material. The developed strategy could be conducted on a multi-gram scale. Both the prepared enantiomers of the bis(thiourea) organocatalyst have been tested in the asymmetric Henry reaction under thoroughly optimized conditions during which an unusual solvent effect on enantioselectivity was found. The corresponding adducts were obtained in excellent yields with good to excellent enantioselectivities. The achieved high reactivity and enantioselectivity in the nitroaldol reaction of nitroalkanes with aromatic aldehydes suggests promising potential for this catalyst. Moreover, a significant syn-diastereoselectivity was observed.

Supporting Information

 
  • References

    • 1a Kotke M, Schreiner PR. (Thio)urea Organocatalysts. In Hydrogen Bonding in Organic Synthesis. Pihko PM. Wiley-VCH; Weinheim: 2009: 141
    • 1b Jakab G, Schreiner PR. Brønsted Acids: Chiral (Thio)urea Derivatives. In Comprehensive Enantioselective Organocatalysis. Vol. 2. Dalko PI. Wiley-VCH; Weinheim: 2013: 315
  • 2 Henry L. C. R. Hebd. Seances Acad. Sci. 1895; 120: 1265
    • 3a Chinchilla R, Nájera C, Sánchez-Agulló P. Tetrahedron: Asymmetry 1994; 5: 1393
    • 3b Scheffler U, Mahrwald R. Chem. Eur. J. 2013; 19: 14346
    • 3c Luzzio FA. Tetrahedron 2001; 57: 915
    • 3d Alvarez-Casao Y, Marques-Lopez E, Herrera RP. Symmetry 2011; 3: 220
    • 4a Sohtome Y, Hashimoto Y, Nagasawa K. Adv. Synth. Catal. 2005; 347: 1643
    • 4b Sohtome Y, Hashimoto Y, Nagasawa K. Eur. J. Org. Chem. 2006; 2894
    • 4c Sohtome Y, Takemura N, Takada K, Takagi R, Iguchi T, Nagasawa K. Chem. Asian J. 2007; 2: 1150
    • 4d Sohtome Y, Nagasawa K. Synlett 2010; 1
    • 4e Sohtome Y, Nagasawa K. Chem. Commun. 2012; 48: 7777
  • 5 Liu X.-G, Jiang J.-J, Shi M. Tetrahedron: Asymmetry 2007; 18: 2773
  • 7 Yu J, Flagan RG, Seinfeld JH. Environ. Sci. Technol. 1998; 32: 2357
    • 8a Britovsek GJ. P, England J, White AJ. P. Dalton Trans. 2006; 1399
    • 8b Denmark SE, Rossi S, Webster MP, Wang H. J. Am. Chem. Soc. 2014; 136: 13016
    • 8c Gillespie KM, Sanders CJ, O’Shaughnessy P, Westmoreland I, Thickitt CP, Scott P. J. Org. Chem. 2002; 67: 3450
    • 8d Harada S, Toudou N, Hiraoka S, Nishida A. Tetrahedron Lett. 2009; 50: 5652
    • 8e Lu J.-M, Ma H, Li S.-S, Ma D, Shao L.-X. Tetrahedron 2010; 66: 5185
    • 8f Mechler M, Latendorf K, Frey W, Peters R. Organometallics 2013; 32: 112
    • 8g Munslow IJ, Gillespie KM, Deeth RJ, Scott P. Chem. Commun. 2001; 1638
    • 8h O’Shaughnessy PN, Gillespie KM, Knight PD, Munslow IJ, Scott P. Dalton Trans. 2004; 2251
    • 8i Pärssinen A, Luhtanen T, Pakkanen T, Leskelä M, Repo T. Eur. J. Inorg. Chem. 2010; 266
    • 8j Sanders CJ, Gillespie KM, Bell D, Scott P. J. Am. Chem. Soc. 2000; 122: 7132
    • 8k Suda H, Motoi M, Fujii M, Kanoh S, Yoshida H. Tetrahedron Lett. 1979; 20: 4565
    • 8l Uehara A, Kubota T, Tsuchiya R. Chem. Lett. 1983; 12: 441
    • 8m Vedder C, Schaper F, Brintzinger H.-H, Kettunen M, Babik S, Fink G. Eur. J. Inorg. Chem. 2005; 1071
    • 8n Wang B.-B, Ye Y.-M, Chen J.-J, Zhou X.-X, Lu J.-M, Shao L.-X. Bull. Chem. Soc. Jpn. 2011; 84: 526
    • 8o Wood MC, Leitch DC, Yeung CS, Kozak JA, Schafer LL. Angew. Chem. Int. Ed. 2007; 46: 354
    • 8p Xu Y, Lu G, Matsunaga S, Shibasaki M. Angew. Chem. Int. Ed. 2009; 48: 3353
    • 8q Ye Y.-M, Wang B.-B, Ma D, Shao L.-X, Lu J.-M. Catal. Lett. 2010; 139: 141
    • 8r Zhang F, Song H, Zi G. Dalton Trans. 2011; 40: 1547
    • 8s Zi G, Zhang F, Liu X, Ai L, Song H. J. Organomet. Chem. 2010; 695: 730
  • 9 Zhang F, Li C, Qi C. Tetrahedron: Asymmetry 2013; 24: 380
    • 10a Deng Y, Liu L, Sarkisian RG, Wheeler K, Wang H, Xu Z. Angew. Chem. Int. Ed. 2013; 52: 3663
    • 10b Mechler M, Peters R. Angew. Chem. Int. Ed. 2015; 54: 10303
  • 11 Langhals H, Hofer A, Bernhard S, Siegel JS, Mayer P. J. Org. Chem. 2011; 76: 990
    • 12a For details of the synthesis of the catalyst, the additional optimization data, full characterization of all compounds and chiral analysis of compounds 1 and 11, see the Supporting Information.
    • 12b CCDC-1479754 contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via: www.ccdc.cam.ac.uk/getstructures.
  • 13 Laurence C, Gal JF. The BF3 Affinity Scale. In Lewis Basicity and Affinity Scales: Data and Measurement. 1st ed. John Wiley & Sons Ltd; Chichester: 2010: 85
    • 14a Marcelli T, van der Haas RN. S, van Maarseveen JH, Hiemstra H. Angew. Chem. Int. Ed. 2006; 45: 929
    • 14b Hammar P, Marcelli T, Hiemstra H, Himo F. Adv. Synth. Catal. 2007; 349: 2537
  • 15 Heshmat M, Kazaryan A, Baerends EJ. Phys. Chem. Chem. Phys. 2014; 16: 7315
    • 16a Tárkányi G, Király P, Soós T, Varga S. Chem. Eur. J. 2012; 18: 1918
    • 16b Jang HB, Rho HS, Oh JS, Nam EH, Park SE, Bae HY, Song CE. Org. Biomol. Chem. 2010; 8: 3918
    • 16c Mita T, Jacobsen EN. Synlett 2009; 1680
    • 16d Peschiulli A, Gun’k Y, Connon SJ. J. Org. Chem. 2008; 73: 2454
    • 16e Rho HS, Oh SH, Lee JW, Lee JY, Chin J, Song CE. Chem. Commun. 2008; 1208
  • 17 Alegre-Requena JV, Marques-Lopez E, Herrera RP. Adv. Synth. Catal. 2016; 358: 1801
  • 18 Sheldrick GM. Acta Crystallogr., Sect. A 2008; 64: 112
    • 19a Aoyama T, Sonoda N, Yamauchi M, Toriyama K, Anzai M, Ando A, Shioiri T. Synlett 1998; 35
    • 19b Pan X.-Q, Wang L, Zou J.-P, Zhang W. Chem. Commun. 2011; 47: 7875
    • 20a Meisenheimer J, Höring M. Chem. Ber. 1927; 60: 1425
    • 20b Carlin RB, Foltz GE. J. Am. Chem. Soc. 1956; 78: 1997
    • 20c Wilcox CF, Lassila KR, Kang S. J. Org. Chem. 1988; 53: 4333
    • 21a Evans DA, Seidel D, Rueping M, Lam HW, Shaw JT, Downey CW. J. Am. Chem. Soc. 2003; 125: 12692
    • 21b Boobalan R, Lee G.-H, Chen C. Adv. Synth. Catal. 2012; 354: 2511
  • 22 Kuhbeck D, Mayr J, Haring M, Hofmann M, Quignard F, Diaz Diaz D. New J. Chem. 2015; 39: 2306
  • 23 Xu F, Lei C, Yan L, Tu J, Li G. Chirality 2015; 27: 761
  • 24 Sema AH, Bez G, Karmakar S. Appl. Organomet. Chem. 2014; 28: 290
  • 25 Mei H, Xiao X, Zhao X, Fang B, Liu X, Lin L, Feng X. J. Org. Chem. 2015; 80: 2272
  • 26 Gao N, Chen Y.-L, He Y.-H, Guan Z. RSC Adv. 2013; 3: 16850
  • 27 Simpson AJ, Lam HW. Org. Lett. 2013; 15: 2586