Subscribe to RSS
DOI: 10.1055/s-0036-1588693
NHC–AuCl/Selectfluor: An Efficient Catalytic System for π-Bond Activation
Publication History
Received: 14 December 2016
Accepted after revision: 06 January 2017
Publication Date:
02 February 2017 (online)
Abstract
Gold complexes have emerged as one of the most efficient catalysts for electrophilic activation of π bonds toward a variety of nucleophiles. N-Heterocyclic carbenes (NHCs), commonly described as excellent σ donors, are becoming increasingly employed in gold catalysis. Selectfluor as external oxidant is able to oxidize Au(I) to Au(III) species, which plays a unique role in the NHC–AuCl/Selectfluor combination. This account describes our recent discovery and development of this efficient catalytic system, NHC–AuCl/Selectfluor, which can be used in cross-coupling reactions of alkenes and arylboronic acids, tandem Diels–Alder/Diels–Alder (DA/DA) reactions of enynals/enynones with alkenes, and carbene-transfer reactions. We believe this account not only should help the understanding of the Au(I)/Selectfluor catalytic system but also promote the development and application of other combinations of low-oxidation-state transition metal/Selectfluor or transition metal/oxidant as catalysts in organic synthesis.
1 Introduction
2 Discovery of the NHC–AuCl/Selectfluor Catalytic System
3 Development of NHC–AuCl/Selectfluor in Tandem DA/DA Reactions of Enynals/Enynones with Alkenes
3.1 Two-Component Three-Molecule Tandem DA/DA Reactions
3.2 Three-Component Three-Molecule Tandem DA/DA Reactions
3.3 Bioinspired Intramolecular DA/DA Reactions
3.4 Investigations of Reaction Mechanism
4. Development of NHC–AuCl/Selectfluor in Carbene-Transfer Reactions
5. Summary and Outlook
-
References
- 1a Gorin DJ, Sherry BD, Toste FD. Chem. Rev. 2008; 108: 3351
- 1b Hashmi AS. K, Hutchings GJ. Angew. Chem. Int. Ed. 2006; 45: 7896
- 1c Li Z, Brouwer C, He C. Chem. Rev. 2008; 108: 3239
- 1d Hashmi AS. K. Chem. Rev. 2007; 107: 3180
- 2a Jiménez-Núñez E, Echavarren AM. Chem. Rev. 2008; 108: 3326
- 2b Carlos Lima J, Rodriguez L. Chem. Soc. Rev. 2011; 40: 5442
- 3 Bratsh SG. J. Phys. Chem. Ref. Data 1989; 18: 1
- 4a Hopkinson MN, Gee AD, Gouverneur V. Chem. Eur. J. 2011; 17: 8248
- 4b Miró J, del Pozo C. Chem. Rev. 2016; 116: 11924
- 5 Nyffeler PT, Durón SG, Burkart MD, Vincent SP, Wong C.-H. Angew. Chem. Int. Ed. 2005; 44: 192
- 6 Schuler M, Silva F, Bobbio C, Tessier A, Gouverneur V. Angew. Chem. Int. Ed. 2008; 47: 7927
- 7a Hopkinson MN, Giuffredi GT, Gee AD, Gouverneur V. Synlett 2010; 2737
- 7b de Haro T, Nevado C. Chem. Commun. 2011; 47: 248
- 8 de Haro T, Nevado C. Adv. Synth. Catal. 2010; 352: 2767
- 9 Wang W, Jasinski J, Hammond GB, Xu B. Angew. Chem. Int. Ed. 2010; 49: 7247
- 10a Zhang G, Cui L, Wang Y, Zhang L. J. Am. Chem. Soc. 2010; 132: 1474
- 10b Zhang G, Luo Y, Wang Y, Zhang L. Angew. Chem. Int. Ed. 2011; 50: 4450
- 10c Zhang G, Peng Y, Cui L, Zhang L. Angew. Chem. Int. Ed. 2009; 48: 3112
- 10d Cui L, Zhang G, Zhang L. Bioorg. Med. Chem. Lett. 2009; 19: 3884
- 11a Melhado AD, Brenzovich WE, Lackner AD, Toste FD. J. Am. Chem. Soc. 2010; 132: 8885
- 11b Brenzovich WE, Benitez D, Lackner AD, Shunatona HP, Tkatchouk E, Goddard WA, Toste FD. Angew. Chem. Int. Ed. 2010; 49: 5519
- 12 Dorel R, Echavarren AM. Chem. Rev. 2015; 115: 9028
- 13a Johnson MW, DiPasquale AG, Bergman RG, Toste FD. Organometallics 2014; 33: 4169
- 13b Morita N, Krause N. Angew. Chem. Int. Ed. 2006; 45: 1897
- 14a Marion N, Nolan SP. Chem. Soc. Rev. 2008; 37: 1776
- 14b Díez-González S, Marion N, Nolan SP. Chem. Rev. 2009; 109: 3612
- 14c Herrmann WA. Angew. Chem. Int. Ed. 2002; 41: 1290
- 14d Herrmann WA, Köcher C. Angew. Chem. Int. Ed. 1997; 36: 2162
- 15a Zhu S, Liang R, Jiang H. Tetrahedron 2012; 68: 7949
- 15b Zhu S, Liang R, Chen L, Wang C, Ren Y, Jiang H. Tetrahedron Lett. 2012; 53: 815
- 16 Zhu S, Ye L, Wu W, Jiang H. Tetrahedron 2013; 69: 10375
- 17a Asao N, Nogami T, Lee S, Yamamoto Y. J. Am. Chem. Soc. 2003; 125: 10921
- 17b Xia Y, Qu S, Xiao Q, Wang Z.-X, Qu P, Chen L, Liu Z, Tian L, Huang Z, Zhang Y, Wang J. J. Am. Chem. Soc. 2013; 135: 13502
- 17c Ma J, Zhang L, Zhu S. Curr. Org. Chem. 2016; 20: 102
- 17d Liang R, Ma T, Zhu S. Org. Lett. 2014; 16: 4412
- 17e Zhu S, Xiao Y, Guo Z, Jiang H. Org. Lett. 2013; 15: 898
- 17f Liang R, Jiang H, Zhu S. Chem. Commun. 2015; 51: 5530
- 17g Zhu S, Zhang Q, Chen K, Jiang H. Angew. Chem. Int. Ed. 2015; 54: 9414
- 17h Ma J, Chen K, Fu H, Zhang L, Wu W, Jiang H, Zhu S. Org. Lett. 2016; 18: 1322
- 18 Siva Kumari AL, Siva Reddy A, Swamy KC. K. Org. Biomol. Chem. 2016; 14: 6651
- 19 Zhu S, Zhang Z, Huang X, Jiang H, Guo Z. Chem. Eur. J. 2013; 19: 4695
- 20 Asao N, Kasahara T, Yamamoto Y. Angew. Chem. Int. Ed. 2003; 42: 3504
- 21 Zhao X, Zhang X.-G, Tang R.-Y, Deng C.-L, Li J.-H. Eur. J. Org. Chem. 2010; 4211
- 22 Zheng R, Zhu S. Chin. J. Org. Chem. 2014; 37: 1322
- 23 Zhu S, Hu L, Jiang H. Org. Biomol. Chem. 2014; 12: 4104
- 24 Zhu S, Huang H, Zhang Z, Ma T, Jiang H. J. Org. Chem. 2014; 79: 6113
- 25 Zhu S, Huang X, Zhao T.-Q, Ma T, Jiang H. Org. Biomol. Chem. 2015; 13: 1225
- 26a Bogle XS, Leber PA, McCullough LA, Powers DC. J. Org. Chem. 2005; 70: 8913
- 26b Olbrich M, Mayer P, Trauner D. J. Org. Chem. 2015; 80: 2042
- 26c Bah J, Franzén J. Chem. Eur. J. 2014; 20: 1066
- 27a Tanino K, Takahashi M, Tomata Y, Tokura H, Uehara T, Narabu T, Miyashita M. Nat. Chem. 2011; 3: 484
- 27b Watanabe K, Suzuki Y, Aoki K, Sakakura A, Suenaga K, Kigoshi H. J. Org. Chem. 2004; 69: 7802
- 27c Tanino K, Onuki K, Asano K, Miyashita M, Nakamura T, Takahashi Y, Kuwajima I. J. Am. Chem. Soc. 2003; 125: 1498
- 27d Corey EJ, Kang MC, Desai MC, Ghosh AK, Houpis IN. J. Am. Chem. Soc. 1988; 110: 649
- 28a Donaldson WA. Tetrahedron 2001; 57: 8589
- 28b Chen DY. K, Pouwer RH, Richard J.-A. Chem. Soc. Rev. 2012; 41: 4631
- 29 Tseng C.-C, Ding H, Li A, Guan Y, Chen DY. K. Org. Lett. 2011; 13: 4410
- 30 Zhu S, Guo Z, Huang Z, Jiang H. Chem. Eur. J. 2014; 20: 2425
- 31 Zhang J, Xiao Y, Chen K, Wu W, Jiang H, Zhu S. Adv. Synth. Catal. 2016; 358: 2684
- 32a Miki K, Washitake Y, Ohe K, Uemura S. Angew. Chem. Int. Ed. 2004; 43: 1857
- 32b Gonzalez J, Lopez LA, Vicente R. Chem. Commun. 2014; 50: 8536
- 32c Miki K, Nishino F, Ohe K, Uemura S. J. Am. Chem. Soc. 2002; 124: 5260
- 32d Vicente R, González J, Riesgo L, González J, López LA. Angew. Chem. Int. Ed. 2012; 51: 8063
- 32e Zhu D, Ma J, Luo K, Fu H, Zhang L, Zhu S. Angew. Chem. Int. Ed. 2016; 55: 8452
- 33 Ma J, Jiang H, Zhu S. Org. Lett. 2014; 16: 4472
- 34a Zhang J, Wang H, Ren S, Zhang W, Liu Y. Org. Lett. 2015; 17: 2920
- 34b Zhang J, Wu D, Chen X, Liu Y, Xu Z. J. Org. Chem. 2014; 79: 4799
- 34c Bao H, Xu Z, Wu D, Zhang H, Jin H, Liu Y. J. Org. Chem. 2017; 82: 109
- 34d Zhang W, Zhang J, Liu Y, Xu Z. Synlett 2013; 24: 2709
- 34e Ren SB, Zhang J, Zhang JH, Wang H, Zhang W, Liu YK, Liu MC. Eur. J. Org. Chem. 2015; 5381