RSS-Feed abonnieren
DOI: 10.1055/s-0036-1588851
Lycopodium Alkaloids: An Intramolecular Michael Reaction Approach
Financial support for this research was provided by the National Science Foundation (CHE 1363105).Publikationsverlauf
Received: 28. Februar 2017
Accepted after revision: 03. Mai 2017
Publikationsdatum:
06. Juni 2017 (online)
Abstract
The Lycopodium alkaloids possess a rich history that has captured the attention of synthetic chemists across the globe. This large family consists of over 250 known natural products with diverse structural features and noteworthy biological activity. Herein, we interweave the synthetic accomplishments by others in the field with our own unified strategy to accessing multiple subfamilies of the Lycopodium alkaloids. This discussion includes lycopodine, the C10-hydroxy Lycopodium alkaloids (10-hydroxylycopodine, deacetylpaniculine and paniculine), pelletierine, cermizine D, fastigiatine, himeradine A, clavolonine and 7-hydroxylycopodine. A unifying feature of much of the work discussed within this account is the use of intramolecular Michael additions to construct key ring systems within the Lycopodium alkaloids. Examples include the use of an intramolecular keto-sulfone Michael reaction and an intramolecular heteroatom Michael reaction.
1 General Background on Lycopodium Alkaloids
2 Development of a Strategy for Lycopodium Alkaloids
2.1 Generalized Strategy
2.2 Known Syntheses of C10-Functionalized Lycopodium Alkaloids
3 Quinolizidine-Type Alkaloids
3.1 Background
3.2 Development of the Heteroatom Michael Reaction
3.3 Synthesis of the Core Lycopodine Building Block: Pelletierine
3.4 Total Synthesis of Cermizine D
3.5 Synthesis of the Eastern Half of Himeradine A
4 Lycopodine-Type Alkaloids
4.1 Total Syntheses of Lycopodine
4.1.1 Earlier Racemic Syntheses
4.1.2 Approach Toward the Tricyclic Skeleton of Lycopodine: Intramolecular Mannich
4.1.3 Enantioselective Total Syntheses of Lycopodine
4.2 Total Syntheses of Clavolonine (8-Hydroxylycopodine)
4.3 Total Synthesis of 7-Hydroxylycopodine
4.4 Synthetic Route for 10-Hydroxy Lycopodium Alkaloids
4.4.1 Background
4.4.2 Total Syntheses
4.4.3 Impact of the C10-Stereochemistry
5 Conclusion
-
References
- 1 Present address: Laboratory of Bioorganic Chemistry, NIDDK, NIH, 9000 Rockville Pike, Bethesda, MD 20892, USA.
- 2a Jiangsu New Medical College: The Dictionary of Traditional Chinese Medicine. Shanghai Sci-Tech Press; Shanghai: 1985
- 2b Wang Y. Huang L.-Q. Tang X.-C. Zhang H.-Y. Acta Pharmacol. Sin. 2010; 31: 649
- 3a Zhang Z. Wang X. Chen Q. Shu L. Wang J. Shan G. Zhonghua Yixue Zazhi 2002; 82: 941
- 3b Zhang CL. Wang GZ. New Drugs Clinic 1990; 9: 339
- 3c Nikonorow M. Acta Pol. Pharm. 1939; 3: 23
- 3d Ortega MG. Agnese AM. Cabrera JL. Phytomedicine 2004; 11: 539
- 4a Ma X. Gang DR. Nat. Prod. Rep. 2004; 21: 752
- 4b Kobayashi J. Morita H. The Alkaloids: Chemistry and Biology . Vol. 61; Cordell GA. Elsevier; Amsterdam: 2005: 1
- 4c Hirasawa Y. Kobayashi J. Morita H. Heterocycles 2009; 77: 679
- 4d Kitajima M. Takayama H. Top. Curr. Chem. 2012; 309: 1
- 4e Siengalewicz P. Mulzer J. Rinner U. The Alkaloids: Chemistry and Biology . Vol. 72; Knölker H.-J. Elsevier; Amsterdam: 2013: 1
- 4f Wang X. Li H. Lei X. Synlett 2013; 24: 1032
- 4g Murphy RA. Sarpong R. Chem. Eur. J. 2014; 20: 42
- 5 Morita H. Hirasawa Y. Kobayashi J. J. Org. Chem. 2003; 68: 4563
- 6a Tanret C. Compt. Rend. 1878; 86: 1270
- 6b Tanret C. Compt. Rend. 1880; 90: 695
- 6c Hess K. Ber. Dtsch. Chem. Ges. 1917; 50: 368
- 6d Hess K. Eichel A. J. Chem. Soc., Abstr. 1918; 114: 33
- 6e Beets MG. J. Recl. Trav. Chim. Pays-Bas 1943; 62: 553
- 6f Galinovsky F. Vogl O. Weiser R. Monatsh. Chem. 1952; 83: 114
- 7a Morita H. Hirasawa Y. Kobayashi J. J. Nat. Prod. 2005; 68: 1809
- 7b Braekman JC. Hootele C. Ayer WA. Bull. Soc. Chim. Belg. 1971; 80: 83
- 8 Carlson EC. Rathbone LK. Yang H. Collett ND. Carter RG. J. Org. Chem. 2008; 73: 5155
- 9 Yang H. Carter RG. J. Org. Chem. 2010; 75: 4929
- 10 Veerasamy N. Carlson EC. Carter RG. Org. Lett. 2012; 14: 1596
- 11 Veerasamy N. Carlson EC. Collett ND. Saha M. Carter RG. J. Org. Chem. 2013; 78: 4779
- 12 Saha M. Carter RG. Org. Lett. 2013; 15: 736
- 13 Liau BB. Shair MD. J. Am. Chem. Soc. 2010; 132: 9594
- 14 Samame RA. Owens CM. Rychnovsky SD. Chem. Sci. 2016; 7: 188
- 15 Lee AS. Liau BB. Shair MD. J. Am. Chem. Soc. 2014; 136: 13442
- 16 Veerasamy N. Carter RG. Tetrahedron 2016; 72: 4989
- 17a Nishikawa Y. Kitajima M. Takayama H. Org. Lett. 2008; 10: 1987
- 17b Nishikawa Y. Kitajima M. Kogure N. Takayama H. Tetrahedron 2009; 65: 1608
- 17c Enamorado MF. Connelly CM. Deiters A. Comins DL. Tetrahedron Lett. 2015; 56: 3683
- 18 Hemscheidt T. Spenser ID. J. Am. Chem. Soc. 1993; 115: 3020
- 19a Matsunaga T. Kawasaki I. Kaneko T. Tetrahedron Lett. 1967; 8: 2471
- 19b Quick J. Meltz C. J. Org. Chem. 1979; 44: 573
- 20 Collett N. Carter RG. Org. Lett. 2011; 13: 4144
- 21a Chen YK. Yoshida M. MacMillan DW. C. J. Am. Chem. Soc. 2006; 128: 9328
- 21b Horstmann TE. Guerin DJ. Miller SJ. Angew. Chem. Int. Ed. 2000; 39: 3635
- 21c Dinér P. Nielsen M. Marigo M. Jørgensen KA. Angew. Chem. Int. Ed. 2007; 46: 1983
- 22 Fustero S. Jimenez D. Moscardo J. Catalan S. del Pozo C. Org. Lett. 2007; 9: 5283
- 23 Fustero S. Moscardo J. Sánchez-Rosello M. Flores S. Guerola M. del Pozo C. Tetrahedron 2011; 67: 7412
- 24 King JA. Hofmann V. McMillan FH. J. Org. Chem. 1951; 16: 1100
- 25a Bowman RE. Evans DD. J. Chem. Soc. 1956; 2553
- 25b Beyerman HC. Maat L. Recl. Trav. Chim. Pays-Bas 1963; 82: 1033
- 25c Beyerman HC. Maat L. Recl. Trav. Chim. Pays-Bas 1965; 84: 385
- 25d Beyerman HC. Maat L. van Veen A. Zweistra A. Recl. Trav. Chim. Pays-Bas 1965; 84: 1367
- 26a Overman LE. J. Am. Chem. Soc. 1974; 96: 597
- 26b Overman LE. Carpenter NE. Org. React. 2005; 66: 1
- 26c Kitamoto K. Sampei M. Nakayama Y. Sato T. Chida N. Org. Lett. 2010; 12: 5756
- 27 Bödeker K. Justus Liebigs Ann. Chem. 1881; 208: 363
- 28 Achmatowicsz O. Uzieblo W. Rocz. Chem. 1938; 18: 88
- 29 Ayer WA. Iverach GG. Tetrahedron Lett. 1962; 3: 87
- 30a Rogers D. Quick A. Hague M. Acta Cryst. 1974; B30: 552
- 30b Hague M. Rogers D. J. Chem. Soc., Perkin Trans. 2 1975; 93
- 31 Nikonorow M. Acta Pol. Pharm. 1939; 3: 23
- 32 Ortega MG. Agnese AM. Cabrera JL. Phytomedicine 2004; 11: 53
- 33 Yang H. Carter RG. Zakharov LN. J. Am. Chem. Soc. 2008; 130: 9238
- 34a Colvin EW. Martin J. Parker W. Raphael RA. Shroot B. Doyle M. J. Chem. Soc., Perkin Trans. 1 1972; 860
- 34b Padwa A. Brodney MA. Marino JP. Jr. Sheehan SM. J. Org. Chem. 1997; 62: 78
- 34c Mori M. Hori K. Akashi M. Hori M. Sato Y. Nishida M. Angew. Chem. Int. Ed. 1998; 37: 637
- 34d Grieco PA. Dai Y. J. Am. Chem. Soc. 1998; 120: 5128
- 35 Stork G. Kretchmer RA. Schlessinger RH. J. Am. Chem. Soc. 1968; 90: 1647
- 36 Ayer WA. Bowman WR. Joseph TC. Smith P. J. Am. Chem. Soc. 1968; 90: 1648
- 37 Kim S. Bando Y. Horii Z. Tetrahedron Lett. 1978; 19: 2293
- 38a Wenkert E. Broka CA. J. Chem. Soc., Chem. Commun. 1984; 714
- 38b Wenkert E. Chauncy B. Dave KG. Jeffcoat R. Schell FM. Schenk FM. J. Am. Chem. Soc. 1973; 95: 8427
- 39 Heathcock CH. Kleinman EF. Binkly ES. J. Am. Chem. Soc. 1982; 104: 1054
- 40 Schumann D. Müller H.-J. Naumann A. Liebigs Ann. Chem. 1982; 1700
- 41 Kraus GA. Hon YS. Heterocycles 1987; 25: 377
- 42a Yang H. Carter RG. Org. Lett. 2008; 10: 4649
- 42b Yang H. Carter RG. J. Org. Chem. 2009; 74: 5151
- 42c Yang H. Carter RG. J. Org. Chem. 2009; 74: 2246
- 42d Yang H. Carter RG. Org. Lett. 2010; 12: 3108
- 42e Yang H. Carter RG. Tetrahedron 2010; 66: 4854
- 42f Pierce M. Johnston RC. Mahapatra S. Yang H. Carter RG. Cheong PH.-Y. J. Am. Chem. Soc. 2012; 134: 13624
- 42g Yang H. Banerjee S. Carter RG. Org. Biomol. Chem. 2012; 10: 4851
- 42h Xiao J.-A. Liu Q. Ren J.-W. Liu J. Carter RG. Chen X.-Q. Yang H. Eur. J. Org. Chem. 2014; 5700
- 42i El-Mansy MF. Kang JY. Lingampally R. Carter RG. Eur. J. Org. Chem. 2016; 150
- 43 For an account on the topic, see: Yang H. Carter RG. Synlett 2010; 2827
- 44 Ma D. Zhong Z. Liu Z. Zhang M. Xu S. Xu D. Song D. Xie X. She X. Org. Lett. 2016; 18: 4328
- 45a Burnell RH. Taylor DR. Chem. Ind. 1960; 1239
- 45b Burnell RH. Mootoo BS. Can. J. Chem. 1961; 39: 1090
- 46 Evans DA. Scheerer JR. Angew. Chem. Int. Ed. 2005; 44: 6038
- 47 Laemmerhold KM. Breit B. Angew. Chem. Int. Ed. 2010; 49: 2367
- 48 Nakahara K. Hirano K. Maehata R. Kita Y. Fujioka H. Org. Lett. 2011; 13: 2015
- 49 Tan C.-H. Zhu D.-Y. Helv. Chim. Acta 2004; 87: 1963
- 50 Ortega MG. Agnese AM. Cabrera JL. Tetrahedron Lett. 2004; 45: 7003
- 51 Vallejo MG. Ortega MG. Cabrera JL. Carlini VP. Rubiales de Barioglio S. Almiron RS. Ramirez OA. Agnese AM. J. Nat. Prod. 2009; 72: 156
- 52a Lin H.-Y. Snider BB. Org. Lett. 2011; 13: 1234
- 52b Lin H.-Y. Causey R. Garcia GE. Snider BB. J. Org. Chem. 2012; 77: 7143
- 53a Castillo M. Morales G. Loyola LA. Singh I. Calvo C. Holland HL. MacLean DB. Can. J. Chem. 1976; 54: 2900
- 53b Morales G. Loyola LA. Castillo M. Phytochemistry 1979; 18: 1719
- 53c Muñoz O. Castillo M. Heterocycles 1982; 19: 2287
- 53d Garland MT. Muñoz O. J. Appl. Cryst. 1982; 15: 112
- 53e Manríquez V. Quintana R. Muñoz O. Castillo M. von Schnering HG. Peters K. Acta Cryst. 1988; C44: 165
- 53f Muñoz OM. Castillo M. San Feliciano A. J. Nat. Prod. 1990; 53: 200
- 54 Saha M. Li X. Collett ND. Carter RG. J. Org. Chem. 2016; 81: 5963
For recent reviews on Lycopodium alkaloids, see:
In addition to the synthetic work discussed within this review, the following references describe additional synthetic studies and total syntheses of lycopodine: