Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2017; 28(07): 863-867
DOI: 10.1055/s-0036-1588931
DOI: 10.1055/s-0036-1588931
letter
Iron(III) Chloride Promoted Oxidative Radical Cyclization for the Synthesis of Lactams Having a Quaternary Carbon
Further Information
Publication History
Accepted: 16 November 2016
Received after revision: 19 December 2016
Publication Date:
12 January 2017 (online)

Abstract
The oxidative radical cyclization of active methylene derivatives containing allyl groups as radical acceptors proceeded with the use of FeCl3 as a mild oxidant. The FeCl3-promoted cyclization reactions of α-substituted active methylene compounds provide a synthetic approach to various γ-lactams containing a quaternary carbon atom.
Supporting Information
- Supporting information for this article is available online at http://dx.doi.org/10.1055/s-0036-1588931.
- Supporting Information
-
References and Notes
- 1a Nair V, Deepthi A. Tetrahedron 2009; 65: 10745
- 1b Demir AS, Emrullahoglu M. Curr. Org. Synth. 2007; 4: 321
- 1c Nair V, Panicker SB, Nair LG, George TG, Augustine A. Synlett 2003; 156
- 1d Nair V, Mathew J, Prabhakaran J. Chem. Soc. Rev. 1997; 26: 127
- 1e Snider BB. Chem. Rev. 1996; 96: 339
- 1f Iqbal J, Bhatia B, Nayyar NK. Chem. Rev. 1994; 94: 519
- 2a Sjödin M, Gätjens J, Tabares LC, Thuéry P, Pecoraro VL, Un S. Inorg. Chem. 2008; 47: 2897
- 2b CRC Handbook of Chemistry and Physics . 87th ed.; Lide DR. CRC Press; Boca Raton: 2006: 2007
- 3a Nair V, Panicker SB, Augustine A, George TG, Thomas S, Vairamani M. Tetrahedron 2001; 57: 7417
- 3b Balaji S, Chung SJ, Thiruvenkatachari R, Moon IS. Chem. Eng. J. (Amsterdam, Neth.) 2007; 126: 51
- 4a Ren R, Wu Z, Xu Y, Zhu C. Angew. Chem. Int. Ed. 2016; 55: 2866
- 4b Lv W.-X, Zeng Y.-F, Zhang S.-S, Li Q, Wang HT. Org. Lett. 2015; 17: 2972
- 4c Gao Y, Li X, Xu J, Wu Y, Chen W, Tang G, Zhao Y. Chem. Commun. 2015; 51: 1605
- 4d Cao J.-J, Wang X, Wang S.-Y, Ji S.-J. Chem. Commun. 2014; 50: 12892
- 4e Chen Z.-M, Zhang Z, Tu Y.-Q, Xu M.-H, Zhang F.-M, Lia C.-C, Wang S.-H. Chem. Commun. 2014; 50: 10805
- 4f Cao X.-H, Pan X, Zhou P.-J, Zou J.-P, Asekun OT. Chem. Commun. 2014; 50: 3359
- 4g Zhang F, Wang L, Zhang C, Zhao Y. Chem. Commun. 2014; 50: 2046
- 4h Lam HC, Kuan KK. W, George JH. Org. Biomol. Chem. 2014; 12: 2519
- 4i Wang Y.-F, Toh KK, Ng EP. J, Chiba S. J. Am. Chem. Soc. 2011; 133: 6411
- 4j Bhat V, MacKay JA, Rawal VH. Org. Lett. 2011; 13: 3214
- 5a Bekkaye M, Masson G. Org. Lett. 2014; 16: 1510
- 5b Yoshida M, Takai H, Yodokawa S, Shishido K. Tetrahedron 2013; 69: 5273
- 5c Rössle M, Christoffers J. Tetrahedron 2009; 65: 10941
- 5d Linker T, Schanzenbach D, Elamparuthi E, Sommermann T, Fudickar W, Gyóllai V, Somsák L, Demuth W, Schmittel M. J. Am. Chem. Soc. 2008; 130: 16003
- 5e Beeson TD, Mastracchio A, Hong J.-B, Ashton K, MacMillan DW. C. Science 2007; 316: 582
- 5f Hong B.-C, Sun H.-I, Shra Y.-J, Lin K.-J. J. Chem. Soc., Perkin Trans. 1 2000; 2939
- 6a Wu H.-R, Cheng L, Kong D.-L, Huang H.-Y, Gu C.-L, Liu L, Wang D, Li C.-J. Org. Lett. 2016; 18: 1382
- 6b Sar D, Bag R, Bhattacharjee D, Deka RC, Punniyamurthy T. J. Org. Chem. 2015; 80: 6776
- 6c Chen B, Guo S, Guo X, Zhang G, Yu Y. Org. Lett. 2015; 17: 4698
- 6d Yang T, Lu L, Shen Q. Chem. Commun. 2015; 51: 5479
- 6e Wei W.-T, Zhou M.-B, Fan J.-H, Liu W, Song R.-J, Liu Y, Hu M, Xie P, Li J.-H. Angew. Chem. Int. Ed. 2013; 52: 3638
- 6f Barker TJ, Boger DL. J. Am. Chem. Soc. 2012; 134: 13588
- 6g Taniguchi T, Sugiura Y, Zaimoku H, Ishibashi H. Angew. Chem. Int. Ed. 2010; 49: 10154
- 6h Conrad JC, Kong J, Laforteza BN, MacMillan DW. C. J. Am. Chem. Soc. 2009; 131: 11640
- 6i Booker-Milburn KI, Jones JL, Sibley GE. M, Cox R, Meadows J. Org. Lett. 2003; 5: 1107
- 6j Sibi MP, Hasegawa M. J. Am. Chem. Soc. 2007; 129: 4124
- 7a Sabbasani VR, Lee H, Xia Y, Lee D. Angew. Chem. Int. Ed. 2016; 55: 1151
- 7b Qiu J.-K, Jiang B, Zhu Y.-L, Hao W.-J, Wang D.-C, Sun J, Wei P, Tu S.-J, Li G. J. Am. Chem. Soc. 2015; 137: 8928
- 7c Lv L, Xi H, Bai X, Li Z. Org. Lett. 2015; 17: 4324
- 7d Yang K, Song Q. Org. Lett. 2015; 17: 548
- 7e Lv L, Lu S, Guo Q, Shen B, Li Z. J. Org. Chem. 2015; 80: 698
- 7f Pan C, Zhang H, Zhu C. Org. Biomol. Chem. 2015; 13: 361
- 7g Xu X, Tang Y, Li X, Hong G, Fang M, Du X. J. Org. Chem. 2014; 79: 446
- 7h Wang J.-Y, Zhang X, Bao Y, Xu Y.-M, Cheng X.-F, Wang X.-S. Org. Biomol. Chem. 2014; 12: 5582
- 7i Wertz S, Leifert D, Studer A. Org. Lett. 2013; 15: 928
- 7j Ekomié A, Lefèvre G, Fensterbank L, Lacôte E, Malacria M, Ollivier C, Jutand A. Angew. Chem. Int. Ed. 2012; 51: 6942
- 7k Chernyak N, Buchwald SL. J. Am. Chem. Soc. 2012; 134: 12466
- 7l Zeng X, Ilies L, Nakamura E. Org. Lett. 2012; 14: 954
- 7m Liu W, Li Y, Liu K, Li Z. J. Am. Chem. Soc. 2011; 133: 10756
- 8 Hack D, Blümel M, Chauhan P, Philipps AR, Enders D. Chem. Soc. Rev. 2015; 44: 6059
- 9a Wong Y.-C, Kao T.-T, Huang J.-K, Jhang Y.-W, Chou M.-C, Shia K.-S. Adv. Synth. Catal. 2014; 356: 3025
- 9b Logan AW. J, Sprague SJ, Foster RW, Marx LB, Garzya V, Hallside MS, Thompson AL, Burton JW. Org. Lett. 2014; 16: 4078
- 9c Keane HA, Hess W, Burton JW. Chem. Commun. 2012; 48: 6496
- 9d Logan AW. J, Parker JS, Hallside MS, Burton JW. Org. Lett. 2012; 14: 2940
- 9e Curry L, Hallside MS, Powell LH, Sprague SJ, Burton JW. Tetrahedron 2009; 65: 10882
- 9f Hulcoop DG, Burton JW. Chem. Commun. 2005; 4687
- 9g Hulcoop DG, Sheldrake HM, Burton JW. Org. Biomol. Chem. 2004; 2: 965
- 9h Okuro K, Alper H. J. Org. Chem. 1996; 61: 5312
- 10a Yamashita S, Suda N, Hayashi Y, Hirama M. Tetrahedron Lett. 2013; 54: 1389
- 10b Wang X, Wang X, Tan X, Lu J, Cormier KW, Ma Z, Chen C. J. Am. Chem. Soc. 2012; 134: 18834
- 10c Snider BB. Tetrahedron 2009; 65: 10738
- 10d González MA, Molina-Navarro S. J. Org. Chem. 2007; 72: 7462
- 11a Yasuda A, Shimidzu T. Polymer J. (Tokyo, Jpn.) 1993; 25: 329
- 11b Shiigi H, Kishimoto M, Yakabe H, Deore B, Nagaoka T. Anal. Sci. 2002; 18: 41
- 12 See Supporting Information.
- 13 trans-3-Acetyl-1-allyl-4-(chloromethyl)-3-methylpyrrolidin-2-one (trans-2a); Typical Procedure A stirred suspension of FeCl3 (127 mg, 1.0 mmol) and substrate 1 (98 mg, 0.50 mmol) in 1,2-dichloroethane (5.0 mL) was refluxed under argon for 24 h. The mixture was diluted with sat. aq NaHCO3 and extracted with EtOAc. The organic phase was dried (Na2SO4) and concentrated at reduced pressure. The residue was purified by preparative TLC [EtOAc–hexanes (1:1)] to give a colorless oil; yield: 93 mg (81%). IR (KBr) 2982, 2935, 1707, 1688, 1442 cm–1. 1H NMR (CDCl3): δ = 5.71 (ddt, J = 17.0, 10.6, 6.3 Hz, 1 H), 5.26–5.18 (m, 2 H), 3.90 (m, 2 H), 3.63 (dd, J = 11.0, 5.5 Hz, 1 H), 3.54 (dd, J = 10.1, 7.3 Hz, 1 H), 3.43 (dd, J = 11.0, 9.2 Hz, 1 H), 3.24 (m,1 H), 3.11 (dd, J = 10.1, 7.4 Hz, 1 H), 2.34 (s, 3 H), 1.36 (s, 3 H). 13C NMR (CDCl3) δ = 205.7, 172.5, 131.6, 118.7, 60.1, 47.9, 45.6, 43.5, 39.6, 26.2, 14.5. HRMS (ESI+); m/z [M + Na]+ calcd for C11H16 35ClNNaO2: 252.0762; found: 252.0760; calcd for C11H16 37ClNO2Na: 254.0735; found: 254.0739.
- 14a Fialin M, Catillon G, Andrault D. Phys. Chem. Miner. 2009; 36: 183
- 14b Yoon SH, Kim CS. J. Korean Phys. Soc. 2004; 44: 369
- 15 A combination of FeCl3 and NCS has been used in a radical oxidative coupling reaction; see: Du W, Tian L, Lai J, Huo X, Xie X, She X, Tang S. Org. Lett. 2014; 16: 2470
- 16 Lind J, Jonsson M, Eriksen TE, Merényi G, Eberson L. J. Phys. Chem. 1993; 97: 1610
For reviews, see:
For examples of Mn(III)-promoted reactions, see:
For examples of CAN-promoted reactions, see:
For examples of Fe(III)-mediated radical reactions, see:
For examples of Fe(II)-mediated radical reactions, see:
For Conia–ene-type radical reactions (Type B), see:
For Conia–ene-type radical reaction (Type C), see: