Synlett, Table of Contents Synlett 2017; 28(07): 851-857DOI: 10.1055/s-0036-1588933 letter © Georg Thieme Verlag Stuttgart · New YorkA Green One-Pot Synthesis of vic-Amidino (Hetero)aromatic Acids from 1,2-Dinitriles Volodymyr A. Tkachuk a Taras Shevchenko National University of Kyiv, Chemistry Department, 64/13 Volodymyrs’ka str., Kyiv, 01601, Ukraine Email: ov_hordiyenko@univ.kiev.ua , Iryna V. Omelchenko b SSI ‘Institute for Single Crystals’ National Academy of Science of Ukraine, 60 Lenina Ave., Kharkiv 61001, Ukraine , Olga V. Hordiyenko* a Taras Shevchenko National University of Kyiv, Chemistry Department, 64/13 Volodymyrs’ka str., Kyiv, 01601, Ukraine Email: ov_hordiyenko@univ.kiev.ua› Author AffiliationsRecommend Article Abstract Buy Article All articles of this category Abstract Phthalonitrile undergoes partial hydration in MeOH–H2O media in the presence of an equimolar amount of NaOH to afford 2-carbamimidoylbenzoic acid in good yield in one step. This and similar vic-amidino (hetero)aromatic acids also could be synthesized from corresponding 1,2-dinitriles by hydrolysis in aqueous MeOH catalyzed by an equimolar amount of NaOH of in situ generated 1,1-dimethoxy-1H-isoindol-3-amine or its counterparts. Protonation of the synthesized amidino acids, esterification, and reamination of the parent amidino benzoic acid with N-nucleophiles were performed. Key words Key wordsgreen chemistry - phthalonitrile - partial hydration - 2-carbamimidoylaromatic acids - 3-carbamimidoyl-2-pyridinecarboxylic acid - protonation - esterification - reamination Full Text References References and Notes 1a Peterlin-Mašič L, Kikelj D. Tetrahedron 2001; 57: 7073 1b Peterlin-Mašič L, Cesar J, Zega A. Curr. Pharm. Des. 2006; 12: 73 2 Hordiyenko OV, Biitseva AV, Kostina YY, Zubatyuk RI, Shishkin OV, Groth UM, Kornilov MY. Struct. Chem. 2016; , in press; 3 Pinner A, Gradenwitz F. Justus Liebigs Ann. Chem. 1897; 298: 45 4a Wagner G, Vieweg H, Kuehmstedt H. Pharmazie 1973; 28: 288 4b Tanizawa K, Iskii S, Kanaoka Y. Chem. Pharm. Bull. 1970; 18: 2247 5 Morrissey M, Buckman B, Mohan R. WO 9807725A1, 1998 ; Chem. Abstr. 1998, 128, 204736 6a El-Sharief AM. S, Hammad NE, Yousef AA. Egyptian J. Chem. 1981; 24: 423 6b Yumita T, Yoshimura T, Hirakawa K, Sawai N, Kojima Y. J. Pestic. Sci. 1988; 13: 221 6c Tamura H, Iwakawa T, Hayase Y. Chem. Pharm. Bull. 1990; 38: 1069 6d Iwakawa T, Tamura H, Masuko M, Murabayashi A, Hayase Y. J. Pestic. Sci. 1992; 17: 131 6e Takahashi I, Nishiuchi K, Miyamoto R, Hatanaka M, Uchida H, Isa K, Sakushima A, Hosoi S. Lett. Org. Chem. 2005; 2: 40 7 Kopylovich MN, Haukka M, Mahmudov KT. Tetrahedron 2015; 71: 8622 8a Oyama H, Umeda T. JP 01215994, 1989 ; Chem. Abstr. 1989, 112, 188007 8b Oyama H, Umeda T, Niitsuma S, Shibata T, Wada T. JP 01034954, 1989 ; Chem. Abstr. 1989, 111, 194316 8c Anilkumar GN, Zeng Q, Rosenblum SB, Kozlowski JA, Mcguinness BF, Hobbs DW. WO 2006088840 A1, 2006 ; Chem. Abstr. 2006, 145, 271811 9a Yamada Y, Kumashiro I. GB 1158965A, 1969 ; Chem. Abstr. 1969, 71, 101889 9b Ajinomoto C. FP 1437211, 1966 ; Chem. Abstr. 1966, 64, 84604 10a Al-Raqa SY, ElSharief AM. S, Khali SM. E, Al-Amri AM. Heteroat. Chem. 2006; 17: 634 10b Ovdiichuk OV, Hordiyenko OV, Arrault A. Tetrahedron 2016; 72: 3427 10c Ovdiichuk OV, Hordiyenko OV, Medviediev VV, Shishkin OV, Arrault A. Synthesis 2015; 47: 2285 11 Nasakin OE, Sheverdov VP, Moiseeva IV, Lyschikov AN, Ershov OV, Nesterov VN. Tetrahedron Lett. 1997; 38: 4455 12 Elvidge JA, Linstead RP. J. Chem. Soc. 1954; 442 13 Baumann F, Bienert B, Rösch G, Vollmann H, Wolf W. Angew. Chem. 1956; 4: 133 14a Siegl WO. J. Heterocycl. Chem. 1981; 18: 1613 14b Cookson RC, Dance J, Godfrey M. Tetrahedron 1968; 24: 1529 14c Hu M, Brasseur N, Yildiz SZ, Van Lier JE, Leznoff CC. J. Med. Chem. 1998; 41: 1789 15 Peri F, Lorenzetti C, Cimitan S, Grob M. WO 2008083918A1, 2008 ; Chem. Abstr. 2008, 149, 178125 16 Wöhrle D, Marose U, Knoop R. Makromol. Chem. 1985; 186: 2209 17a Kojima T, Nagasaki F, Ohtsuka Y. J. Heterocycl. Chem. 1980; 17: 455 17b Biitseva AV, Rudenko IV, Hordiyenko OV, Omelchenko IV, Arrault A. Synthesis 2015; 47: 3733 17c Chattaway FD, Humphrey WG. J. Chem. Soc. 1929; 645 18a Ohtsuka Y. J. Org. Chem. 1976; 41: 713 18b Woodward DW. US 2534331, 1950 ; Chem. Abstr. 1950, 45, 29788 18c Chu DC. K, Cho JH, Kim H.-J. WO 2007047793, 2007 ; Chem. Abstr. 2007, 146, 462472 19 Spiessens LI, Anteunis MJ. O. Bull. Soc. Chim. Belg. 1983; 92: 965 20 Elvidge JA, Redman AP. J. Chem. Soc., Perkin Trans. 1 1972; 2820 21 Müller G. Ber. Dtsch. Chem. Ges. 1886; 19: 1491 22 Synthesis of Amidino Acids 5a,c–e; General ProcedureMethod A To a solution of NaOH (0.4 g, 10 mmol) in aq MeOH (25 mL; MeOH–H2O, 3:2) 1,2-dinitrile (10 mmol) was added, and the obtained suspension was brought to reflux with stirring. The resulting clear solution was refluxed for 15–20 min before the elimination of ammonia began. Then the hot reaction mixture, if necessary, was filtered through cotton wool in order to separate the phthalocyanine impurities. The solution was left to cool at r.t. overnight during which time well-firmed crystals were formed. The crystals were filtered off, washed with MeOH (10 mL), and dried in air. Acidification of the mother liquior with AcOH (ca. 1 mL) to neutral pH produced an additional portion of target product. Method B To a freshly prepared solution of MeONa obtained by dissolving sodium metal (0.23 g, 10 mmol) in MeOH (15 mL), 1,2-dinitrile (10 mmol) was added. The resulting suspension was stirred at ambient temperature until TLC showed no starting nitrile. The obtained solution or suspension was diluted with distilled water (10 mL), brought to reflux with stirring, and kept under reflux for 20–25 min before the elimination of ammonia began. The further workup was as in method A. 2-Carbamimidoylbenzoic Acid (5а) Method А; colorless crystals of MeOH solvate (ca. 1:0.7) which lost MeOH on standing in air; yield 1.34 g (72%); mp 179–180 °С. IR (KBr): 3395, 3232, 3092, 2954, 2829, 1667, 1579, 1538, 1468, 1437, 1384 cm–1. 1H NMR of MeOH solvate (400 MHz, D2O, 25 °С): δ = 3.32 (s, 2 H, MeOH), 7.52 (d, J = 7.6 Hz, J m = 0.8 Hz, 1 H, H3), 7.56 (dd, J 1 = 7.6 Hz, J 2 = 7.6 Hz, J m =1.2 Hz, 1 H, H4), 7.63 (dd, J 1 = 7.6 Hz, J 2 = 7.6 Hz, J m =1.2 Hz, 1 H, H5), 7.73 (d, J = 7.6 Hz, 1 H, H6). 1H NMR (400 MHz, D2O, 25 °С): δ = 7.72–7.80 (m, 2 H, H3 + H4), 7.85 (dd, J 1 = 7.2 Hz, J 2 = 7.2 Hz, 1 H, H5), 7.93 (d, J = 7.6 Hz, 1 H, H6). 13C NMR (100 MHz, D2O, 25 °С): δ = 171.3 (СООH), 166.9 (C(NH2)=NH), 135.2 (С1), 129.8, 127.7, 126.7, 125.8 (С2), 125.7. Anal. Calcd for C8H8N2O2: C, 58.53; H, 4.91; N, 17.06. Found: C, 58.24; H, 4.99; N, 17.38. 2-Carbamimidoyl-3-methoxybenzoic Acid (5с) Method В; colorless crystals of MeOH solvate (ca. 1:1); yield 1.40 g (62%); mp 190–191 °С (subl.). IR (KBr): 3338, 3069, 1686, 1615, 1579, 1522, 1466, 1432, 1377 cm–1. 1H NMR (400 MHz, D2O, 25 °С): δ = 3.33 (s, 3 H, CH3OH), 3.89 (s, 3 Н, OСH3), 7.25 (d, J = 8.4 Hz, 1 H, HAr), 7.36 (d, J = 8.0 Hz, 1 H, HAr), 7.58 (dd, J 1 = 8.0 Hz, J 2 = 8.4 Hz, 1 H, H5). 13C NMR (100 MHz, D2O, 25 °С): δ = 175.2 (СООH), 168.5 (C(NH2)=NH), 157.9, 140.3, 134.8, 123.1, 119.4, 115.8, 58.5 (CH3O), 50.9 (CH3OH). Anal. Calcd for C9H10N2O3×СH3OH: C, 53.09; H, 6.24; N, 12.38. Found: C, 53.30; H, 6.31; N, 12.76. 2-Carbamimidoyl-3-morpholin-4-ylbenzoic Acid (5d) Method В; pale yellow crystals of MeOH solvate (ca. 1:1); yield 1.71 g (61%); mp 194–195 °С (dec.). IR (KBr): 3360, 3244, 3064, 2962, 2924, 2858, 2826, 1688, 1610, 1574, 1520, 1430, 1386 cm–1. 1H NMR (400 MHz, D2O, 25 °С): δ = 3.10 (m, 4 H, Hmorph), 3.45 (s, 4 H, MeOH), 3.95 (m, 4 H, Hmorph), 7.55 (d, J = 7.6 Hz, 1 H, H4), 7.60 (d, J = 7.6 Hz, 1 H, H6), 7.71 (2×d, J 1 = 7.6 Hz, J2 = 7.6 Hz, 1 H, H5). 1H NMR (400 MHz, D2O + HCl, 25 °С): δ = 2.88 (m, 4 H, Hmorph), 3.20 (s, 2 H, MeOH), 3.72 (m, 4 H, Hmorph), 7.58–7.64 (m, 2 H, H4,5), 7.82 (d, J = 6.4 Hz, 1 H, H6). 13C NMR (100 MHz, D2O + HCl, 25 °С): δ = 168.0 (СООH), 167.0 (C(NH2)=NH), 150.6, 132.8, 129.3, 128.2, 127.7, 127.6, 66.9, 52.7, 48.8. Anal. Calcd for C12H15N3O3·СH3OH: C, 55.50; H, 6.81; N, 14.94. Found: C, 55.84; H, 6.78; N, 14.63. 3-Carbamimidoylpyridine-2-carboxylic Acid (5e) Method В; colorless crystals; yield 1.14 g (69%); mp 250–251 °С. IR (KBr): 3016, 2360, 1706, 1583, 1565, 1526, 1446, 1428, 1377 cm–1. 1H NMR (400 MHz, D2O, 25 °С): δ = 7.61 (dd, J 1 = 7.6 Hz, J 2 = 7.6 Hz, 1 H, H5), 8.04 (d, J = 8 Hz, J M = 1.2 Hz, 1 H, H4), 8.70 (d, J = 4.4 Hz, 1 H, H6). 13C NMR (100 MHz, D2O, 25 °С): δ = 170.3, 169.0, 162.5, 153.6, 139.6, 133.0, 126.7. 1H NMR (400 MHz, D2O + HCl, 25 °С): δ = 8.03–8.06 (m, 1 H, H5), 8.49 (d, J = 7.2 Hz, 1 H, H4), 8.80 (d, J = 4 Hz, 1 H, H6). 13C NMR (100 MHz, D2O + HCl, 25 °С): δ = 164.0 (СООH), 161.7 (C(NH2)=NH), 146.6, 144.6, 143.1, 129.2, 128.2. Anal. Calcd for C7H7N3O2: C, 50.91; H, 4.27; N, 25.44. Found: C, 51.28; H, 4.34; N, 25.75. 2-(4,5-Dihydro-1H-imidazol-2-yl)benzoic Acid (26) To a suspension of 2-carbamimidoylbenzoic acid (5a, 0.328 g, 2 mmol) in EtOH (10 mL) was added an excess of 70% ethylenediamine solution in water (1.5 mL, 18 mmol). This reaction mixture was refluxed until no more ammonia gas was fixed by pH paper. The obtained clear solution was evaporated under reduced pressure to a volume of about 5 mL and acidified with a few drops of 10 M HCl to neutral pH with stirring. After standing for 2 h, fine colorless crystals were formed and separated by filtration, washed with EtOH (2 mL), and dried. Colorless crystals of hydrate (1:1); yield 0.277 g (73%); mp 222–223 °С. IR (KBr): 3382, 3218, 3106, 2944, 2896, 2686, 1628, 1604, 1577, 1556, 1380, 1286 cm–1. 1H NMR (400 MHz, D2O, 25 °С): δ = 4.07 (s, 4 H, CH2), 7.55 (d, J = 7.6 Hz, 1 H, H3), 7.59 (2 × d, J 1 = 7.6 Hz, J 2 = 7.2 Hz, 1 H, H4), 7.68 (2 × d, J 1 = 7.2 Hz, J 2 = 7.2 Hz, 1 H, H5), 7.76 (d, J = 7.2 Hz, 1 H, H6). 13C NMR (100 MHz, D2O, 25 °С): δ = 173.6 (СООH), 168.7 (C(NH)=NH), 138.0, 132.8, 130.1, 129.0, 128.4, 122.0, 45.0 (2 CH2). Anal. Calcd for C10H10N2O2·H2O: C, 57.68; H, 5.81; N, 13.45. Found: C, 58.03; H, 6.19; N, 13.80. LC–MS: m/z (%) = 191 (100) [M + H]+. 23 X-ray diffraction studies of compounds 5c,e, 17, 20, 21a, and 4 were performed on an ‘Xcalibur 3’ diffractometer (graphite-monochromated Mo Kα radiation (λ = 0.71073), CCD detector, ω scans). Structure 4 was studied at both low and room temperature. Structures were solved by direct method and refined against F2 within anisotropic approximation for all nonhydrogen atoms using OLEX2 program package24 with SHELXS and SHELXL modules.25 Crystallographic data, details of the data collection and processing, structure solution and refinement are summarized in Table S1 (see Supporting Information). CCDC numbers 1509778 (20) and 1509780–1509785 (5e, 4, 21a, 5c, 17) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures. 24 Dolomanov OV, Bourhis LJ, Gildea RJ, Howard JA. K, Puschmann H. J. Appl. Crystallogr. 2009; 42: 339 25 Sheldrick G. Acta Crystallogr., Sect. A: Found. Crystallogr. 2008; 64: 112 Supplementary Material Supplementary Material Supporting Information