Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000084.xml
Synthesis 2017; 49(09): 2009-2014
DOI: 10.1055/s-0036-1588946
DOI: 10.1055/s-0036-1588946
paper
Synthesis of Acylsilanes via Catalytic Dedithioacetalization of 2-Silylated 1,3-Dithianes with 30% Hydrogen Peroxide
Further Information
Publication History
Received: 09 January 2017
Accepted after revision: 13 January 2017
Publication Date:
15 February 2017 (online)
Abstract
Acylsilanes were obtained efficiently from dedithioacetalization of 2-silylated 1,3-dithianes using 30% hydrogen peroxide catalyzed by iron(III) acetylacetonate–sodium iodide. The use of niobium(V) chloride as a catalyst instead of iron(III) acetylacetonate was also effective, except in synthesizing some acyltrimethylsilanes.
-
References
- 1a Zhang H.-J, Priebbenow DL, Bolm C. Chem. Soc. Rev. 2013; 42: 8540
- 1b Honda M, Segi M. J. Synth. Org. Chem. 2010; 68: 601
- 1c Patrocinio AF, Moran PJ. S. J. Braz. Chem. Soc. 2001; 12: 7
- 1d Ricci A, Deg’l Innocenti A. Synthesis 1989; 647
- 2a Decostanzi M, Godemert J, Oudeyer S, Levacher V, Campagne J.-M, Leclerc E. Adv. Synth. Catal. 2016; 358: 526
- 2b Ruiz J, Karre N, Roisnel T, Chandrasekhar S, Gree R. Eur. J. Org. Chem. 2016; 773
- 2c Nikolaev A, Orellana A. Org. Lett. 2015; 17: 5796
- 2d Lin C.-Y, Ma P.-J, Sun Z, Lu C.-D, Xu Y.-J. Chem. Commun. 2016; 52: 912
- 2e Becker P, Pirwerdjan R, Bolm C. Angew. Chem. Int. Ed. 2015; 54: 15493
-
2f Gonzalez J, Santamaria J, Ballesteros A. Angew. Chem. Int. Ed. 2015; 54: 13678
- 2g Lu P, Feng C, Loh T.-P. Org. Lett. 2015; 17: 3210
- 2h Marri G, Reddy JS, Ruiz J, Das S, Gree R. Eur. J. Org. Chem. 2015; 840
- 2i Ando M, Sasaki M, Miyashita I, Takeda K. J. Org. Chem. 2015; 80: 247
- 2j Rong J, Oost R, Desmarchelier A, Minnaard AJ, Harutyunyan SR. Angew. Chem. Int. Ed. 2015; 54: 3038
- 2k Smirnov P, Katan E, Mathew J, Kostenko A, Karni M, Nijs A, Bolm C, Apeloig Y, Marek I. J. Org. Chem. 2014; 79: 12122
- 2l Matsuda T, Mizuno K, Watanuki S. J. Organomet. Chem. 2014; 765: 64
- 2m Labarre-Laine J, Perinan I, Desvergnes V, Landais Y. Chem. Eur. J. 2014; 20: 9336
- 2n Honda M, Nakamura T, Sumigawa T, Kunimoto K.-K, Segi M. Heteroat. Chem. 2014; 25: 565
- 2o Gangireddy PK. R. M, Murthy AS, Satyanarayana Reddy J, Das S, Roisnel T, Yadav JS, Chandrasekhar S, Gree R. Tetrahedron Lett. 2014; 55: 365
- 2p Becker P, Priebbenow DL, Zhang H.-J, Pirwerdjan R, Bolm C. J. Org. Chem. 2014; 79: 814
- 2q Murthy AS, Roisnel T, Chandrasekhar S, Gree R. Synlett 2013; 24: 2216
- 2r Becker P, Priebbenow DL, Pirwerdjan R, Bolm C. Angew. Chem. Int. Ed. 2014; 53: 269
- 2s Cirriez V, Rasson C, Riant O. Adv. Synth. Catal. 2013; 355: 3137
- 2t Labarre-Laine J, Beniazza R, Desvergnes V, Landais Y. Org. Lett. 2013; 15: 4706
- 2u Reddy GP, Reddy JS, Das S, Roisnel T, Yadav JS, Chandrasekhar S, Gree R. Org. Lett. 2013; 15: 1524
- 2v Tsubouchi A, Sasaki N, Enatsu S, Takeda T. Tetrahedron Lett. 2013; 54: 1264
- 2w Wu L, Li G, Fu Q, Yu L, Tang Z. Org. Biomol. Chem. 2013; 11: 443
- 3a Brook AG, Duff JM, Jones PF, Davis NR. J. Am. Chem. Soc. 1967; 89: 431
- 3b Corey EJ, Seebach D, Freedman R. J. Am. Chem. Soc. 1967; 89: 434
- 3c Reich HJ, Eisenhart EK, Olson RE, Kelly MJ. J. Am. Chem. Soc. 1986; 108: 7791
- 3d Reich HJ, Holtan RC, Bolm C. J. Am. Chem. Soc. 1990; 112: 5609
- 3e Tsai Y.-M, Chang S.-Y. J. Chem. Soc., Chem. Commun. 1995; 981
- 3f Chuang T.-H, Fang J.-M, Jiaang W.-T, Tsai Y.-M. J. Org. Chem. 1996; 61: 1794
- 3g Bouillon JP, Portella C. Tetrahedron Lett. 1997; 38: 6595
- 3h Bouillon J.-P, Portella C. Eur. J. Org. Chem. 1999; 1571
- 3i Narasaka K, Sakashita T, Mukaiyama T. Bull. Chem. Soc. Jpn. 1972; 45: 3724
- 3j Stütz P, Stadler PA. Org. Synth. 1977; 56: 8
- 3k Patrocínio AF, Moran PJ. S. J. Organomet. Chem. 2000; 603: 220
- 4a Kirihara M, Noguchi T, Okajima N, Naito S, Ishizuka Y, Harano A, Tsukiji H, Takizawa R. Tetrahedron 2012; 68: 1515
- 4b Kirihara M, Suzuki S, Ishizuka Y, Yamazaki K, Matsushima R, Suzuki T, Iwai T. Tetrahedron Lett. 2013; 54: 5477
- 5 Kirihara M, Harano A, Tsukiji H, Takizawa R, Uchiyama T, Hatano A. Tetrahedron Lett. 2005; 46: 6377
- 6 A large excess of 30% hydrogen peroxide is required, because hydrogen peroxide is not stable enough in this reaction system and gradually decomposes to oxygen and water without reacting with Nb(V) and I–.
- 7 Kirihara M, Asai Y, Ogawa S, Noguchi T, Hatano A, Hirai Y. Synthesis 2007; 3286 ; and references cited therein
- 8 Linghu X, Nicewicz DA, Johnson JS. Org. Lett. 2002; 4: 2957
- 9 Patrocínio AF, Corrêa IR. Jr, Moran PJ. S. J. Chem. Soc., Perkin Trans. 1 1999; 3133
- 10 Obora Y, Tsuji Y, Kawamura T. J. Am. Chem. Soc. 1995; 117: 9814
- 11 ALDRICH Chemistry, Handbook of Fine Chemistry. Sigma-Aldrich; St. Louis USA: 2012
- 12 Ito K, Tamashima H, Iwasawa N, Kusama H. J. Am. Chem. Soc. 2011; 133: 3716
- 13 Huckins JR, Rychnovsky SD. J. Org. Chem. 2003; 68: 10135
- 14 Reich HJ, Kelly MJ. J. Am. Chem. Soc. 1982; 104: 1119
- 15 Hammaecher C, Ouzzane I, Portella C, Bouillon J.-P. Tetrahedron 2005; 61: 657
- 16 Clayden J, Watson DW, Chambers M. Tetrahedron 2005; 61: 3195
- 17 Bai X.-F, Gao G, Zheng Z.-J, Li F, Lai G.-Q, Jiang K, Li F, Xu L.-W. Synlett 2011; 3031
Reviews: