Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2017; 28(11): 1353-1357
DOI: 10.1055/s-0036-1588976
DOI: 10.1055/s-0036-1588976
letter
Primary-Secondary Diamine Catalyzed Enantioselective Synthesis of Substituted Cyclohex-2-enones by Cascade Michael–Aldol–Dehydration of Ketones with Chalcones
Further Information
Publication History
Received: 06 February 2017
Accepted after revision: 27 February 2017
Publication Date:
20 March 2017 (online)
Abstract
A simple primary-secondary diamine organocatalyst catalyzes the cascade Michael–aldol–dehydration of chalcones and unmodified ketones to produce substituted cyclohex-2-enones under mild conditions with good yields and high enantio- and/or diastereoselectivities. The success of the catalyst system is possibly due to simultaneous activation of the electrophilic chalcone by iminium formation and the nucleophilic ketone by enamine formation with an overall intramolecular iminium–di-enamine mechanism.
Supporting Information
- Supporting information for this article is available online at http://dx.doi.org/10.1055/s-0036-1588976.
- Supporting Information
-
References and Notes
- 1a Dalko PI. Enantioselective Organocatalysis . Wiley-VCH; Weinheim: 2007
- 1b Berkessel A, Grçger H. Asymmetric Organocatalysis . Wiley-VCH; Weinheim: 2004
- 1c Chem. Rev. 2007; 107: 5413-5413
- 1d Acc. Chem. Res. 2004; 37: 487-487
- 1e Melchiorre P, Marigo M, Carlone A, Bartoli G. Angew. Chem. Int. Ed. 2008; 47: 6138-6138
- 1f Dondoni A, Massi A. Angew. Chem. Int. Ed. 2008; 47: 4638-4638
- 2a Marigo M, Jørgensen KA. Chem. Commun. 2006; 2001-2001
- 2b Guillena G, Ramón DJ. Tetrahedron: Asymmetry 2006; 17: 1465-1465
- 2c Bertelsen S, Nielsen M, Jørgensen KA. Angew. Chem. Int. Ed. 2007; 46: 7356-7356
- 3a Lelais G, MacMillan DW. C. Aldrichimica Acta 2006; 39: 79-79
- 3b Almasi D, Alonso DA, Najera C. Tetrahedron: Asymmetry 2007; 18: 299-299
- 3c Mukherjee S, Yang JW, Hoffmann S, List B. Chem. Rev. 2007; 107: 5471-5471
- 3d Tsogoeva SB. Eur. J. Org. Chem. 2007; 1701-1701
- 3e Jørgensen KA, Bertelsen S. Chem. Soc. Rev. 2009; 38: 2178-2178
- 3f Melchiorre P. Angew. Chem. Int. Ed. 2012; 51: 9748-9748
- 3g Erkkila A, Majander I, Phiko PM. Chem. Rev. 2007; 107: 5416-5416
- 4a Tietze LF. Chem. Rev. 1996; 96: 115-115
- 4b Li G, Wei H.-X, Kim S.-H, Carducci MD. Angew. Chem. Int. Ed. 2001; 40: 4277-4277
- 4c Enders D, Hüttl MR. M, Grondal C, Rabbe G. Nature (London, U.K.) 2006; 441: 861-861
- 5a Enders D, Grondal C, Hüttl MR. M. Angew. Chem. Int. Ed. 2007; 46: 1570-1570
- 5b Westermann B, Ayaz M, van Berkel SS. Angew. Chem. Int. Ed. 2010; 49: 846-846
- 5c Grondal C, Jeanty M, Enders D. Nat. Chem. 2010; 2: 167-167
- 5d Yu X, Wang W. Org. Biomol. Chem. 2008; 6: 2037-2037
- 5e Vera S, Melchiore P. An. Quím. 2010; 106: 277-277
- 5f Pellissier H. Adv. Synth. Catal. 2012; 354: 237-237
- 5g Marson CM. Chem. Soc. Rev. 2012; 41: 7712-7712
- 5h Pellissier H. Chem. Rev. 2013; 113: 442-442
- 6a Ho T.-L. Enantioselective Synthesis: Natural Products Synthesis from Chiral Terpenes. Wiley; New York: 1992
- 6b Klunder AJ. H, Zhu J, Zwanenburg B. Chem. Rev. 1999; 99: 1163-1163
- 6c Mohr PJ, Halcomb RL. J. Am. Chem. Soc. 2003; 125: 1712-1712
- 6d Miyashita M, Saino M. Science 2004; 305: 495-495
- 6e Baran PS, Ritcher JM, Lin DW. Angew. Chem. Int. Ed. 2005; 44: 609-609
- 6f Goeke A, Mertl D, Brunner G. Angew. Chem. Int. Ed. 2005; 44: 99-99
- 6g Lakshmi R, Bateman TD, McIntosh MC. J. Org. Chem. 2005; 70: 5313-5313
- 7 Yang X, Wang J, Li P. Org. Biomol. Chem. 2014; 12: 2499-2499
- 8a Agami C, Sevestre H. J. Chem. Soc., Chem. Commun. 1984; 1385-1385
- 8b Agami C, Platzer N, Sevestre H. Bull. Soc. Chim. Fr. 1987; 2: 358-358
- 8c Zhong G, Hoffmann T, Lerner RA, Danishefsky S, Barbas CF. III. J. Am. Chem. Soc. 1997; 119: 8131-8131
- 8d List B, Lerner RA, Barbas CF. III. Org. Lett. 1999; 1: 59-59
- 8e Zhou J, Wakchaure V, Kraft P, List B. Angew. Chem. Int. Ed. 2008; 47: 7656-7656
- 8f Chen L, Luo S, Li J, Li X, Cheng JP. Org. Biomol. Chem. 2010; 8: 2627-2627
- 8g Zhang F.-Y, Corey EJ. Org. Lett. 2000; 2: 1097-1097
- 9a Halland N, Aburel PS, Jørgensen KA. Angew. Chem. Int. Ed. 2004; 43: 1272-1272
- 9b Akiyama T, Katoh T, Mori K. Angew. Chem. Int. Ed. 2009; 48: 4226-4226
- 9c Wang LL, Peng L, Bai JF, Huang QC, Xu XY, Wang LX. Chem. Commun. 2010; 46: 8064-8064
- 9d Yang YQ, Chai Z, Wang HF, Chen XK, Cui HF, Zheng CW, Xiao H, Li Zhao PG. Chem. Eur. J. 2009; 15: 13295-13295
- 9e Cui HF, Yang YQ, Chai Z, Li P, Zheng CW, Zhu SZ, Zhao G. J. Org. Chem. 2010; 75: 117-117
- 9f Li PF, Wang YC, Liang XM, Ye JX. Chem. Commun. 2008; 3302-3302
- 9g Li PF, Wen SG, Yu F, Liu QX, Li WJ, Wang YC, Liang XM, Ye JX. Org. Lett. 2009; 11: 753-753
- 9h Wen SG, Li PF, Wu HB, Yu F, Liang XM, Ye JX. Chem. Commun. 2010; 46: 4806-4806
- 9i Yang JJ, Li WJ, Jin ZC, Liang XM, Ye JX. Org. Lett. 2010; 12: 5218-5218
- 10a Carlone A, Marigo M, North C, Landa A, Jørgensen KA. Chem. Commun. 2006; 4928-4928
- 10b Marigo M, Bertelsen S, Landa A, Jørgensen KA. J. Am. Chem. Soc. 2006; 128: 5475-5475
- 10c Bolze P, Dickmeiss G, Jørgensen KA. Org. Lett. 2008; 10: 3753-3753
- 10d Albrecht Ł, Richter B, Vila C, Krawczyk H, Jørgensen KA. Chem. Eur. J. 2009; 15: 3093-3093
- 10e Hayashi Y, Toyoshima M, Gotoh H, Ishikawa H. Org. Lett. 2009; 11: 45-45
- 11a Chen YC. Synlett 2008; 1919-1919
- 11b Wang J, Li H, Zu LS, Wang W. Adv. Synth. Catal. 2006; 348: 425-425
- 11c Wang J, Wang X, Ge Z, Cheng T, Li R. Chem. Commun. 2010; 46: 1751-1751
- 11d Qian Y, Xiao S, Liu L, Wang Y. Tetrahedron: Asymmetry 2008; 19: 1515-1515
- 11e Xu DZ, Shi S, Liu YJ, Wang YM. Tetrahedron 2009; 65: 9344-9344
- 11f Liu YF, Wu Y, Lu AD, Wang YM, Wu GP, Zhou ZH, Tang CC. Tetrahedron: Asymmetry 2011; 22: 476-476
- 11g Ma S, Wu L, Liu M, Wang Y. Org. Biomol. Chem. 2012; 10: 3721-3721
- 11h Xie HY, Ban SR, Liu JN, Li QS. Tetrahedron Lett. 2012; 53: 3865-3865
- 11i Liu L, Zhu Y, Huang K, Chang W, Li J. Eur. J. Org. Chem. 2013; 2634-2634
- 11j Kumar TP, Sattar MA, Sarma VU. M. Tetrahedron: Asymmetry 2013; 24: 1615-1615
- 12 Wagh SJ, Chowdhury R, Ghosh SK. Curr. Organocatal. 2014; 1: 71-71
- 13a Peng F, Shao Z. J. Mol. Catal. A: Chem. 2008; 285: 1-1
- 13b Wu L.-W, Lu Y. Org. Biomol. Chem. 2008; 6: 2047-2047
- 13c Xu L.-W, Luo J, Lu Y. Chem. Commun. 2009; 1807-1807
- 13d Chen Y.-C. Synlett 2008; 1919-1919
- 14 Bartoli G, Melchiorre P. Synlett 2008; 1759-1759
- 15a Inokoishi Y, Sasakura N, Nakano K, Ichikawa Y, Kotsuki H. Org. Lett. 2010; 12: 1616-1616
- 15b Ge Z, Cheng T, Li R. Chem. Commun. 2010; 2124-2124
- 15c Liu Y, Wang J, Sun Q, Li R. Tetrahedron Lett. 2011; 52: 3584-3584
- 15d Liu Y, Gao P, Wang J, Sun Q, Ge Z, Li R. Synlett 2012; 23: 1031-1031
- 16a Wang W, Wang J, Zhou S, Sun Q, Ge Z, Wang X, Li R. Chem. Commun. 2013; 1333-1333
- 16b Liu Y, Liu X, Wang M, He P, Lin L, Feng X. J. Org. Chem. 2012; 77: 4136-4136
- 17a Diakos C.-I, Zhang M, Beale P.-J, Fenton R.-R, Hambley T.-W. Eur. J. Med. Chem. 2009; 44: 2807-2807
- 17b Shen H.-M, Ji H.-B. Tetrahedron Lett. 2012; 53: 3541-3541
- 18 A mixture of chalcone 4a (0.2 mmol), acetone (3 mmol), organocatalyst 3 (0.06 mmol), 3,5-dinitrobenzoic acid (0.08 mmol) in t-BuOH (500 μL) was stirred at r.t. for 96 h. After column chromatography (eluent: 95:5, hexane–EtOAc) a white solid was obtained (40 mg, 80%). The enantiomeric excess (ee) was determined by HPLC using a Chiralcel OJ-H column (hexane–i-PrOH = 90:10); flow rate 1.0 mL/min; t R (major) = 18.3 min, t R (minor) = 21.3 min (ee 89%); [α]D 26 +34.8 (c 0.5, CH2Cl2); mp 92–93 °C. IR (KBr): 1663 (CO), 1605, 1497, 1444, 1372, 1265, 761 cm–1. 1H NMR (400 MHz, CDCl3): δ = 2.69–2.82 (m, 2 H, CH2), 2.95 (ddd, = 2.4, 11.2, 17.8 Hz, 1 H, CHA HBCO), 3.07 (dd, J = 4.4, 17.8 Hz, CHA HB CO, 1 H), 3.43–3.51 (m, 1 H, PhCH), 6.52 (d, J = 1.8 Hz, 1 H, C=CH), 7.29–7.46 (m, 8 H, Ar), 7.53–7.58 (m, 2 H, Ar). 13C NMR (50 MHz, CDCl3): δ = 36.2, 40.9, 43.9, 125.0, 126.1 (2 C), 126.7 (2 C), 127.0, 128.8 (3 C), 130.1, 138.3, 143.1, 158.7 (2 C), 199.2 (CO).
- 19 The structures of 6c (CCDC 1041621) and 9b (CCDC 1041622) were confirmed by single-crystal X-ray data. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.
For selected reviews, see:
Special issue on organocatalysis:
Special issue on organocatalysis:
Selected reviews:
Selected reviews:
Selected reviews:
Selected reviews:
Selected reviews:
For recent selected examples, see:
For selected examples, see:
For selected examples, see:
For selected reviews on primary amine catalysis, see:
For a review on asymmetric primary amine catalysts based on Cinchona alkaloids, see:
For selected examples, see: