RSS-Feed abonnieren
Bitte kopieren Sie die angezeigte URL und fügen sie dann in Ihren RSS-Reader ein.
https://www.thieme-connect.de/rss/thieme/de/10.1055-s-00000083.xml
Synlett 2017; 28(20): 2876-2880
DOI: 10.1055/s-0036-1589070
DOI: 10.1055/s-0036-1589070
letter
Thiourea-Catalyzed Domino Michael–Mannich [3+2] Cycloadditions: A Strategy for the Asymmetric Synthesis of 3,3′-Pyrrolidinyl-dispirooxindoles
Financial support from the European Research Council (ERC Advanced Grant 320493 ‘DOMINOCAT’) is gratefully acknowledged.Weitere Informationen
Publikationsverlauf
Received: 22. Mai 2017
Accepted after revision: 08. Juni 2017
Publikationsdatum:
13. Juli 2017 (online)
Dedicated to Professor Victor Snieckus on the occasion of his 80th birthday
Abstract
The asymmetric synthesis of trifluoromethylated 3,3′-pyrrolidinyl-dispirooxindole derivatives with four contiguous stereogenic centers, including two vicinal spiro-stereocenters, is described. Employing a bifunctional thiourea catalyst, a domino Michael–Mannich [3+2] cycloaddition occurs readily between isatin ketimines and isatin-derived enoates with good yields and very high stereoselectivities, providing a direct entry to the title compounds of potential medical value.
Key words
asymmetric synthesis - dispirooxindole - organocatalysis - domino reaction - Michael–Mannich [3+2] cycloadditionSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0036-1589070.
- Supporting Information
-
References and Notes
- 1 For a leading review, see: Galliford CV. Scheidt KA. Angew. Chem. Int. Ed. 2007; 46: 8748
- 2a Marti C. Carreira EM. Eur. J. Org. Chem. 2003; 2209
- 2b Trost BM. Brennan MK. Synthesis 2009; 3003
- 2c Antonchick AP. Gerding-Reimers C. Catarinella M. Schürmann M. Preut H. Ziegler S. Rauh D. Waldmann H. Nat. Chem. 2010; 2: 735
- 2d Tan B. Zeng X. Leong WW. Y. Shi Z. Barbas III CF. Zhong G. Chem. Eur. J. 2012; 18: 63
- 3a Babu AR. S. Raghunathan R. Mathivanan N. Omprabha G. Velmurugan D. Raghu R. Curr. Chem. Biol. 2008; 2: 312
- 3b Arun Y. Bhaskar G. Balachandran C. Ignacimuthu S. Perumal PT. Bioorg. Med. Chem. Lett. 2013; 23: 1839
- 4 Dai W. Jiang X.-L. Wu Q. Shi F. Tu S.-J. J. Org. Chem. 2015; 80: 5737
- 5 Zhao K. Zhi Y. Li X. Puttreddy R. Rissanen K. Enders D. Chem. Commun. 2016; 52: 2249
- 6a Hagmann WK. J. Med. Chem. 2008; 51: 4359
- 6b Purser S. Moore PR. Swallow S. Gouverneur V. Chem. Soc. Rev. 2008; 37: 320
- 6c Gillis EP. Eastman KJ. Hill MD. Donnelly DJ. Meanwell NA. J. Med. Chem. 2015; 58: 8315
- 7a Rios R. Chem. Soc. Rev. 2012; 41: 1060
- 7b Franz AK. Hanhan NV. Ball-Jones NR. ACS Catal. 2013; 3: 540
- 7c Cheng D. Ishihara Y. Tan B. Barbas III CF. ACS Catal. 2014; 4: 743
- 7d Liu Y.-L. Wang X. Zhao Y.-L. Zhu F. Zeng X.-P. Chen L. Wang C.-H. Zhao X.-L. Zhou J. Angew. Chem. Int. Ed. 2013; 52: 13735
- 7e Noole A. Ošeka M. Pehk T. Öeren M. Järving I. Elsegood MR. J. Malkov AV. Lopp M. Kanger T. Adv. Synth. Catal. 2013; 355: 829
- 8a Wang C. Yang X. Loh CC. J. Raabe G. Enders D. Chem. Eur. J. 2012; 18: 11531
- 8b Yang X. Wang C. Ni Q. Enders D. Synthesis 2012; 44: 2601
- 8c Loh CC. J. Hack D. Enders D. Chem. Commun. 2013; 49: 10230
- 8d Beceño C. Chauhan P. Rembiak A. Wang A. Enders D. Adv. Synth. Catal. 2015; 357: 672
- 8e Zhao K. Shu T. Jia J. Raabe G. Enders D. Chem. Eur. J. 2015; 21: 3933
- 8f Zou L.-H. Philipps AR. Raabe G. Enders D. Chem. Eur. J. 2015; 21: 1004
- 8g Wang L. Li S. Blümel M. Philipps AR. Wang A. Puttreddy R. Rissanen K. Enders D. Angew. Chem. Int. Ed. 2016; 55: 11110
- 8h Zhao K. Zhi Y. Shu T. Valkonen A. Rissanen K. Enders D. Angew. Chem. Int. Ed. 2016; 55: 12104
- 8i Zhao K. Zhi Y. Wang A. Enders D. ACS Catal. 2016; 6: 657
- 9a Ma M. Zhu Y. Sun Q. Li X. Su J. Zhao L. Zhao Y. Qiu S. Yan W. Wang K. Wang R. Chem. Commun. 2015; 51: 8789
- 9b Sun Q. Li X. Su J. Zhao L. Ma M. Zhu Y. Zhao Y. Zhu R. Yan W. Wang K. Wang R. Adv. Synth. Catal. 2015; 357: 3187
- 9c Li X. Su J. Liu Z. Zhu Y. Dong Z. Qiu S. Wang J. Lin L. Shen Z. Yan W. Wang K. Wang R. Org. Lett. 2016; 18: 956
- 9d Wang Z.-H. Wu Z.-J. Yue D.-F. Hu W.-F. Zhang X.-M. Xu X.-Y. Yuan W.-C. Chem. Commun. 2016; 52: 11708
- 10a Jiang K. Jia Z.-J. Chen S. Wu L. Chen Y.-C. Chem. Eur. J. 2010; 16: 2852
- 10b Jia Z.-J. Jiang H. Li J.-L. Gschwend B. Li Q.-Z. Yin X. Grouleff J. Chen Y.-C. Jørgensen KA. J. Am. Chem. Soc. 2011; 133: 5053
- 10c Yang L. Wang F. Chua PJ. Lv Y. Zhong L.-J. Zhong G. Org. Lett. 2012; 14: 2894
- 10d Sun W. Zhu G. Wu C. Li G. Hong L. Wang R. Angew. Chem. Int. Ed. 2013; 52: 8633
- 10e Sun W. Hong L. Zhu G. Wang Z. Wei X. Ni J. Wang R. Org. Lett. 2014; 16: 544
- 10f Monari M. Montroni E. Nitti A. Lombardo M. Trombini C. Quintavalla A. Chem. Eur. J. 2015; 21: 11038
- 10g Sun Q.-S. Zhu H. Chen Y.-J. Yang X.-D. Sun X.-W. Lin G.-Q. Angew. Chem. Int. Ed. 2015; 54: 13253
- 10h Xie D. Yang L. Lin Y. Zhang Z. Chen D. Zeng X. Zhong G. Org. Lett. 2015; 17: 2318
- 10i Zhu L. Chen Q. Shen D. Zhang W. Shen C. Zeng X. Zhong G. Org. Lett. 2016; 18: 2387
- 11 While this manuscript was in preparation, an elegant paper by Lu, Weng, Lin and co-workers appeared and described a similar reaction catalyzed by chiral squaramides rather than thioureas: Huang W.-J. Chen Q. Lin N. Long X.-W. Pan W.-G. Xiong Y.-S. Weng J. Lu G. Org. Chem. Front. 2017; 4: 472
- 12 General Procedure for the Synthesis of 3,3′-Pyrrolidinyl-dispirooxindoles 3a–q A glass tube equipped with a stirring bar was charged with trifluoroethylisatin ketimine 1 (0.40 mmol, 1.0 equiv), 3-olefinic oxindole 2 (0.48 mmol, 1.2 equiv), catalyst J (0.04 mmol, 10 mol%), and CCl4 (4.0 mL). The resulting solution of the reaction mixture was cooled to 4 °C and was stirred at 4 °C for 12 h. The solvent was evaporated to give the crude product, which was directly purified by flash chromatography (pentane/Et2O) to provide the desired products 3a–q. Analytical Data for Compound 3a Compound 3a was obtained as a light yellow solid (0.223 g, 87% yield), mp 162–164 °C; [α]D 25 +58.9 (c 1.0, CHCl3). HPLC: CHIRALPAK IC; n-heptane/i-PrOH = 9:1; flow rate 1.0 mL/min; temp 30 °C; t R = 6.80 min (major), 10.58 min (minor); ee 92%. 1H NMR (600 MHz, CDCl3): δ = 7.76 (d, J = 8.4 Hz, 1 H), 7.54 (d, J = 7.8 Hz, 1 H), 7.38–7.34 (m, 3 H), 7.33–7.30 (m, 2 H), 7.28–7.24 (m, 2 H), 7.01 (t, J = 7.8 Hz, 1 H), 6.59–6.56 (m, 1 H), 6.53 (d, J = 7.8 Hz, 1 H), 6.47 (d, J = 8.4 Hz, 1 H), 5.24 (d, J = 15.6 Hz, 1 H), 5.07 (d, J = 9.0 Hz, 1 H), 4.97–4.92 (m, 1 H), 4.46 (d, J = 15.6 Hz, 1 H), 3.84–3.74 (m, 2 H), 2.81 (br s, 1 H), 1.56 (s, 9 H), 0.81 (t, J = 7.2 Hz, 3 H) ppm. 13C NMR (150 MHz, CDCl3): δ = 175.4, 170.0, 167.6, 148.7, 143.7, 140.0, 135.5, 130.4, 130.1, 128.7 (2 C), 127.6 (2 C), 127.5, 125.3 (q, J = 279.9 Hz), 125.2 (2 C), 124.0, 123.9, 123.4, 121.9, 115.3, 109.3, 84.5, 72.5, 63.1, 61.4, 60.2 (q, J = 32.2 Hz), 51.2, 44.5, 28.1 (3 C), 13.4 ppm. IR (ATR): 3823, 3456, 2969, 2655, 2330, 2089, 1889, 1741, 1366, 1216, 811, 687 cm–1. ESI-MS: m/z = 658.2 [M + Na]+. ESI-HRMS: m/z [M + Na]+ calcd for C34H32N3O6F3Na+: 658.2135; found: 658.2136.
- 13 CCDC 1549337 contains the supplementary crystallographic data for the compound 4. These data can be obtained free of charge from The Cambridge Crystallographic Data Center via www.ccdc.cam.ac.uk/getstructures.
For selected reviews, see:
For an excellent example, see:
For reviews on syntheses of spiro compounds, see:
For selected examples, see:
For reports from our group, see:
For selected reports involing 3-olefinic oxindoles, see: