Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2017; 28(20): 2956-2960
DOI: 10.1055/s-0036-1589098
DOI: 10.1055/s-0036-1589098
letter
Palladium-Catalyzed Arylation of Benzylic C–H Bonds of Azaarylmethanes with Aryl Sulfides
This work was supported by JSPS KAKENHI Grant Numbers JP16H01019, JP16H04109, JP16H06887, as well as JST ACT-C Grant Number JPMJCR12ZE, Japan. H.Y. thanks the Japan Association for Chemical Innovation, the Tokuyama Science Foundation, and The Naito Foundation for financial support. G.K. acknowledges a JSPS Postdoctoral Fellowship for Foreign Researchers.Further Information
Publication History
Received: 26 June 2017
Accepted after revision: 17 July 2017
Publication Date:
17 August 2017 (online)
Dedicated to Professor Victor Snieckus in celebration of his 80th birthday
Abstract
Benzylic C–H arylation of azaarylmethanes with aryl sulfides has been developed by using a Pd-NHC catalyst and an amide base. Various azaarylmethanes and aryl sulfides were involved in the reaction to afford the corresponding diarylmethanes in good to excellent yields. Moreover, triarylmethane synthesis was accomplished through iterative arylations of 2- or 4-methylpyridine with two different aryl sulfides.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0036-1589098.
- Supporting Information
-
References and Notes
- 1a de Meijere A. Diederich F. Metal-Catalyzed Cross-Coupling Reactions . Wiley-VCH; Weinheim, Germany: 2004
- 1b Nishihara Y. Applied Cross-Coupling Reactions . Springer; Heidelberg: 2013
- 1c Hassan J. Sévignon M. Gozzi C. Schulz E. Lemaire M. Chem. Rev. 2002; 102: 1359
- 1d Alberico D. Scott ME. Lautens M. Chem. Rev. 2007; 107: 174
- 1e Suzuki A. Angew. Chem. Int. Ed. 2011; 50: 6722
- 2a Herrmann WA. Angew. Chem. Int. Ed. 2002; 41: 1290
- 2b Littke AF. Fu GC. Angew. Chem. Int. Ed. 2002; 41: 4176
- 2c Bedford RB. Cazin CS. J. Holder D. Coord. Chem. Rev. 2004; 248: 2283
- 3a Amii H. Uneyama K. Chem. Rev. 2009; 109: 2119
- 3b Ohashi M. Ogoshi S. Catalysts 2014; 4: 321
- 3c Ahrens T. Kohlmann J. Ahrens M. Braun T. Chem. Rev. 2015; 115: 931
- 3d Ohashi M. Ogoshi S. J. Synth. Org. Chem., Jpn. 2016; 74: 1047
- 4a Yu D.-G. Li B.-J. Shi Z.-J. Acc. Chem. Res. 2010; 43: 1486
- 4b Rosen BM. Quasdorf KW. Wilson DA. Zhang N. Resmerita A.-M. Garg NK. Percec V. Chem. Rev. 2011; 111: 1346
- 4c Tobisu M. Chatani N. Top. Organomet. Chem. 2013; 44: 35
- 4d Han F.-S. Chem. Soc. Rev. 2013; 42: 5270
- 4e Li W.-N. Wang Z.-L. RSC Adv. 2013; 3: 25565
- 4f Cornella J. Zarate C. Martin R. Chem. Soc. Rev. 2014; 43: 8081
- 4g Tobisu M. Chatani N. Acc. Chem. Res. 2015; 48: 1717
- 4h Tollefson EJ. Hanna LE. Jarvo ER. Acc. Chem. Res. 2015; 48: 2344
- 5a Sugimura H. Okamura H. Miura M. Yoshida M. Takei H. Nippon Kagaku Kaishi 1985; 416
- 5b Naso F. Pure Appl. Chem. 1988; 60: 79
- 5c Luh T.-Y. Ni Z.-J. Synthesis 1990; 89
- 5d Luh T.-Y. Acc. Chem. Res. 1991; 24: 257
- 5e Fiandanese V. Pure Appl. Chem. 1990; 62: 1987
- 5f Dubbaka SR. Vogel P. Angew. Chem. Int. Ed. 2005; 44: 7674
- 5g Prokopcová H. Kappe CO. Angew. Chem. Int. Ed. 2008; 47: 3674
- 5h Wang L. He W. Yu Z. Chem. Soc. Rev. 2013; 42: 599
- 5i Modha SG. Mehta VP. Van der Eycken EV. Chem. Soc. Rev. 2013; 42: 5042
- 5j Pan F. Shi Z.-J. ACS Catal. 2014; 4: 280
- 5k Gao K. Otsuka S. Baralle A. Nogi K. Yorimitsu H. Osuka A. J. Synth. Org. Chem., Jpn. 2016; 74: 1119
- 6a Kanemura S. Kondoh A. Yorimitsu H. Oshima K. Synthesis 2008; 2659
- 6b Ookubo Y. Wakamiya A. Yorimitsu H. Osuka A. Chem. Eur. J. 2012; 18: 12690
- 6c Murakami K. Yorimitsu H. Osuka A. Angew. Chem. Int. Ed. 2014; 53: 7510
- 6d Sugahara T. Murakami K. Yorimitsu H. Osuka A. Angew. Chem. Int. Ed. 2014; 53: 9329
- 6e Otsuka S. Fujino D. Murakami K. Yorimitsu H. Osuka A. Chem. Eur. J. 2014; 20: 13146
- 6f Baralle A. Otsuka S. Guérin V. Murakami K. Yorimitsu H. Osuka A. Synlett 2015; 26: 327
- 6g Gao K. Yorimitsu H. Osuka A. Eur. J. Org. Chem. 2015; 2678
- 6h Otsuka S. Yorimitsu H. Osuka A. Chem. Eur. J. 2015; 21: 14703
- 6i Baralle A. Yorimitsu H. Osuka A. Chem. Eur. J. 2016; 22: 10768
- 6j Gao K. Yorimitsu H. Osuka A. Angew. Chem. Int. Ed. 2016; 55: 4573
- 7a Houwer JD. Maes BU. W. Synthesis 2014; 46: 2533
- 7b Nambo M. Crudden CM. ACS Catal. 2015; 5: 4734
- 8a Campeau L.-C. Schipper DJ. Fagnou K. J. Am. Chem. Soc. 2008; 130: 3266
- 8b Mousseau JJ. Larivee A. Charette AB. Org. Lett. 2008; 10: 1641
- 8c Schipper DJ. Campeau L.-C. Fagnou K. Tetrahedron 2009; 65: 3155
- 8d Burton PM. Morris JA. Org. Lett. 2010; 12: 5359
- 8e Duez S. Steib AK. Manolikakes SM. Knochel P. Angew. Chem. Int. Ed. 2011; 50: 7686
- 8f Duez S. Steib AK. Knochel P. Org. Lett. 2012; 14: 1951
- 9a Inoh J.-I. Satoh T. Pivsa-Art S. Miura M. Nomura M. Tetrahedron Lett. 1998; 39: 4673
- 9b Niwa T. Yorimitsu H. Oshima K. Org. Lett. 2007; 9: 2373
- 9c McGrew GI. Temaismithi J. Carroll PJ. Walsh PJ. Angew. Chem. Int. Ed. 2010; 49: 5541
- 9d Song G. Su Y. Gong X. Han K. Li X. Org. Lett. 2011; 13: 1968
- 9e Zhang J. Bellomo A. Creamer AD. Dreher SD. Walsh PJ. J. Am. Chem. Soc. 2012; 134: 13765
- 9f Chen J.-J. Onogi S. Hsieh Y.-C. Hsiao C.-C. Higashibayashi S. Sakurai H. Wu Y.-T. Adv. Synth. Catal. 2012; 354: 1551
- 9g Bellomo A. Zhang J. Trongsiriwat N. Walsh PJ. Chem. Sci. 2013; 4: 849
- 9h Zhang J. Bellomo A. Trongsiriwat N. Jia T. Carroll PJ. Dreher SD. Tudge MT. Yin H. Robinson JR. Schelter EJ. Walsh PJ. J. Am. Chem. Soc. 2014; 136: 6276
- 9i Ji X. Huang T. Wu W. Liang F. Cao S. Org. Lett. 2015; 17: 5096
- 9j Cao X. Sha S.-C. Li M. Kim B.-S. Morgan C. Huang R. Yang X. Walsh PJ. Chem. Sci. 2016; 7: 611
- 9k Zhang J. Sha S.-C. Bellomo A. Trongsiriwat N. Gao F. Tomson NC. Walsh PJ. J. Am. Chem. Soc. 2016; 138: 4260
- 10a Kantchev EA. B. Ying JY. Organometallics 2009; 28: 289
- 10b Peh G.-R. Kantchev EA. B. Er J.-C. Ying JY. Chem. Eur. J. 2010; 16: 4010
- 11 C–H Arylation of 2a with 1a; Typical Procedure: A Schlenk tube was charged with SingaCycle-A3 (10 mg, 0.015 mmol), potassium bis(trimethylsilyl)amide (KN(SiMe3)2; 0.18 g, 0.90 mmol) and octane (1.0 mL). Methyl phenyl sulfide (1a; 38 mg, 0.30 mmol) and 2-methylpyridine (2a; 59 μL, 0.60 mmol) were added, and the resulting mixture was stirred at 100 °C for 12 h. After the addition of H2O, the mixture was passed through pads of Na2SO4 and silica gel, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (toluene/EtOAc, 5:1) to give 3aa (40 mg, 0.23 mmol, 78%) as a yellow oil. All the resonances in 1H and 13C NMR spectra were consistent with reported values, see: Niwa T. Yorimitsu H. Oshima K. Angew. Chem. Int. Ed. 2007; 46: 2643
- 12a Kantchev EA. B. O’Brien CJ. Organ MG. Aldrichimica Acta 2006; 39: 117
- 12b Organ MG. Chass GA. Fang D.-C. Hopkinson AC. Valente C. Synthesis 2008; 2776
- 12c Valente C. Çalimsiz S. Hoi KH. Mallik D. Sayah M. Organ MG. Angew. Chem. Int. Ed. 2012; 51: 3314
- 13 Isomeric 2-, 3-, and 4-methylpyridines have pK a values of 34, 37.7, and 32.3 in THF, respectively, see: Fraser RR. Mansour TS. Savard S. J. Org. Chem. 1985; 50: 3232
For reviews, see:
For recent reviews on transition-metal-mediated synthesis of diarylmethanes and triarylmethanes, see:
For diarylmethane synthesis through C–H arylation with aryl electrophiles, see:
For triarylmethane synthesis through C–H arylation of diarylmethanes with aryl electrophiles, see:
For reviews of Pd-PEPPSI-NHC catalysts, see: