Subscribe to RSS
DOI: 10.1055/s-0036-1589125
Exploring the Remote Reactivity of π-Extended Carbonyl Compounds: The Vinylogous Alkylidene Malononitrile Activation Strategy
Publication History
Received: 08 August 2017
Accepted after revision: 28 September 2017
Publication Date:
15 November 2017 (online)
![](https://www.thieme-connect.de/media/synlett/201803/lookinside/thumbnails/st-2017-a0613-a_10-1055_s-0036-1589125-1.jpg)
Abstract
The installation of malononitrile into π-extended carbonyl compounds gives rise to vinylogous alkylidene malononitriles (also known as π-extended dicyanovinylidenes), the direct functionalization of which at remote C(sp3) pronucleophilic sites becomes possible and viable. Starting from easily accessible representative polyunsaturated malononitriles, mild conditions were found to directly couple them to complementary enal acceptors. In all cases, the malononitrile handle proved an indispensable (and optionally traceless) activating ingredient for the vinylogous reactions to proceed efficiently and selectively. Merging the vinylogy concept with the malononitrile HOMO-raising activation strategy and complementary organocatalytic activation modalities (i.e. LUMO-lowering iminium ion activation) turned out to be a successful option, as demonstrated by the number of diverse carbocyclic and heterocyclic chiral products that were (stereo)selectively accessed through this chemistry.
1 Introduction
2 Reactions of Cyclohexenylidene Malononitriles with Enals
3 Reactions of Allylidene Malononitriles with Enals
4 Reactions of Indolylmethylene Malononitriles with Enals
5 Conclusion
-
References
- 1a Breslow R. Chem. Soc. Rev. 1972; 1: 553
- 1b Breslow R. Acc. Chem. Res. 1980; 13: 170
- 1c Breslow R. Corcoran RJ. Snider BB. J. Am. Chem. Soc. 1974; 96: 6791
- 2a Schwarz H. Acc. Chem. Res. 1989; 22: 282
- 2b Tang R.-Y. Li G. Yu J.-Q. Nature 2014; 507: 215
- 2c Franzoni I. Mazet C. Org. Biomol. Chem. 2014; 12: 233
- 2d Vasseur A. Bruffaerts J. Marek I. Nat. Chem. 2016; 8: 209
- 3a Fuson RC. Chem. Rev. 1935; 16: 1
- 3b Casiraghi G. Zanardi F. Appendino G. Rassu G. Chem. Rev. 2000; 100: 1929
- 3c Casiraghi G. Battistini L. Curti C. Rassu G. Zanardi F. Chem. Rev. 2011; 111: 3076
- 3d Zanardi F. Rassu G. Battistini L. Curti C. Sartori A. Casiraghi G. In Targets in Heterocyclic Systems – Chemistry and Properties . Vol. 6. Attanasi OA. Spinelli D. Società Chimica Italiana; Rome: 2012: 56
- 4a Cui H.-L. Chen Y.-C. Chem. Commun. 2009; 4479
- 4b Pansare SV. Paul EK. Chem. Eur. J. 2011; 17: 8770
- 4c Bisai V. Synthesis 2012; 44: 1453
- 4d Kumar I. Ramaraju P. Mir NA. Org. Biomol. Chem. 2013; 11: 709
- 4e Jurberg ID. Chatterjee I. Tannert R. Melchiorre P. Chem. Commun. 2013; 49: 4869
- 4f Jusseau X. Chabaud L. Guillou C. Tetrahedron 2013; 49: 4869
- 4g Jiang H. Albrecht Ł. Jørgensen KA. Chem. Sci. 2013; 4: 2287
- 4h Kalesse M. Cordes M. Symkenberg G. Lu H.-H. Nat. Prod. Rep. 2014; 31: 563
- 4i Schneider C. Abels F. Org. Biomol. Chem. 2014; 12: 3531
- 4j Uraguchi D. Ooi T. Top. Curr. Chem. 2015; 372: 55
- 4k Hepburn HB. Dell’Amico L. Melchiorre P. Chem. Rec. 2016; 16: 1787
- 4l Battistini L. Curti C. Rassu G. Sartori A. Zanardi F. Synthesis 2017; 49: 2297
- 5a Curti C. Sartori A. Battistini L. Brindani N. Rassu G. Pelosi G. Lodola A. Mor M. Casiraghi G. Zanardi F. Chem. Eur. J. 2015; 21: 6433
- 5b Curti C. Battistini L. Sartori A. Lodola A. Mor M. Rassu G. Pelosi G. Zanardi F. Casiraghi G. Org. Lett. 2011; 13: 4738
- 6a Frias M. Mas-Ballesté R. Arias S. Alvarado C. Alemán J. J. Am. Chem. Soc. 2017; 139: 672
- 6b Iriarte I. Olaizola O. Vera S. Gamboa I. Oiarbide M. Palomo C. Angew. Chem. Int. Ed. 2017; 56: 8860
- 7 Strictly speaking, the term ‘enolization’ refers to deprotonation of a carbonyl compound to form the corresponding enolate. Nevertheless, here and throughout the text, this term is used in a wider meaning to include nitrile compounds.
- 8 Dell’Amico L. Rassu G. Zambrano V. Sartori A. Curti C. Battistini L. Pelosi G. Casiraghi G. Zanardi F. J. Am. Chem. Soc. 2014; 136: 11107
- 9 Brindani N. Rassu G. Dell’Amico L. Zambrano V. Pinna L. Curti C. Sartori A. Battistini L. Casiraghi G. Pelosi G. Greco D. Zanardi F. Angew. Chem. Int. Ed. 2015; 54: 7386
- 10a Rassu G. Curti C. Zambrano V. Pinna L. Brindani N. Pelosi G. Zanardi F. Chem. Eur. J. 2016; 22: 12637
- 10b Rassu G. Curti C. Zambrano V. Pinna L. Brindani N. Pelosi G. Zanardi F. Synform 2016; 12: A184
- 11a Bencivenni G. Galzerano P. Mazzanti A. Bartoli G. Melchiorre P. Proc. Natl. Acad. Sci. U.S.A. 2010; 107: 20642
- 11b Corrigendum: Bencivenni G. Galzerano P. Mazzanti A. Bartoli G. Melchiorre P. Proc. Natl. Acad. Sci. U.S.A. 2013; 110: 4852
- 12 Feng X. Zhou Z. Zhou R. Zhou Q.-Q. Dong L. Chen Y.-C. J. Am. Chem. Soc. 2012; 134: 19942
- 13 Xue D. Chen Y.-C. Wang Q.-W. Cun L.-F. Zhu J. Deng J.-G. Org. Lett. 2005; 7: 5293
- 14 Kang T.-R. Xie J.-W. Du W. Feng X. Chen Y.-C. Org. Biomol. Chem. 2008; 6: 2673
- 15a Jensen KL. Dickmeiss G. Jiang H. Albrecht Ł. Jørgensen KA. Acc. Chem. Res. 2012; 45: 248
- 15b Li J.-L. Liu T.-Y. Chen Y.-C. Acc. Chem. Res. 2012; 45: 1491
- 16a Flanigan DM. Romanov-Michailidis F. White NA. Rovis T. Chem. Rev. 2015; 115: 9307
- 16b Law KR. McErlean CS. P. Chem. Eur. J. 2013; 19: 15852
- 17 Dell’Amico L. Albrecht Ł. Naicker T. Poulsen PH. Jørgensen KA. J. Am. Chem. Soc. 2013; 135: 8063
- 18 Almost concomitantly to our work, similar [4+2] cycloaddition chemistry was reported, involving cyclohexenylidene malononitrile pronucleophiles and enals under secondary amine organocatalysis, see: Li Q.-Z. Gu J. Chen Y.-C. RSC Adv. 2014; 4: 37522
- 19a For similar stabilizing coulombic interactions, see for example: Dell’Amico L. Companyó X. Naicker T. Bräuer TM. Jørgensen KA. Eur. J. Org. Chem. 2013; 5262
- 19b See also ref. 17.
- 20a Bench BJ. Liu C. Evett CR. Watanabe CM. H. J. Org. Chem. 2006; 71: 9458
- 20b Hong B.-C. Wu M.-F. Tseng H.-C. Huang G.-F. Su C.-F. Liao J.-H. J. Org. Chem. 2007; 72: 8459
- 20c Corrigendum: Hong B.-C. Wu M.-F. Tseng H.-C. Huang G.-F. Su C.-F. Liao J.-H. J. Org. Chem. 2008; 73: 2480
- 20d de Figueiredo RM. Fröhlich R. Christmann M. Angew. Chem. Int. Ed. 2008; 47: 1450
- 21 For prolinol silyl ether catalyzed intermolecular [4+2] cycloadditions between α,β-unsaturated aldehydes and ketones en route to steroid compounds, see: Halskov KS. Donslund BS. Barfüsser S. Jørgensen KA. Angew. Chem. Int. Ed. 2014; 53: 4137
- 22 The extremely strong electron-withdrawing character of the dicyanovinylidene moiety has been demonstrated (Hammett constant σp = 0.84 vs σp = 0.78 for the NO2 group) and this explains how mild base catalysis may be sufficient to generate vinylogous γ-carbanions.
- 23 Liu Y. Nappi M. Arceo E. Vera S. Melchiorre P. J. Am. Chem. Soc. 2011; 133: 15212
- 24a Knölker H.-J. Reddy KR. Chem. Rev. 2002; 102: 4303
- 24b Schmidt W. Reddy KR. Knölker H.-J. Chem. Rev. 2012; 112: 3193
- 24c Tian X. Hofmann N. Melchiorre P. Angew. Chem. Int. Ed. 2014; 53: 2997
- 25 Personal note of the authors: this experiment was not reported in the original paper (ref. 10a).
- 26 Almost concomitantly to our work, a similar study was published, exploiting the reactivity of 2-methylindolyl methylenemalononitriles en route to enantioenriched dihydrocarbazoles, see: Gu B.-Q. Zhang H. Su R.-H. Deng W.-P. Tetrahedron 2016; 72: 6595
For leading references on vinylogy, see:
For focused review articles on vinylogy, see:
For examples of long-distance deprotonation in π-extended carbonyl systems, see:
For recent examples of Cα vs Cγ selectivity in organocatalyzed C–C bond-forming reactions, see: