Synthesis 2018; 50(03): 470-484
DOI: 10.1055/s-0036-1589133
short review
© Georg Thieme Verlag Stuttgart · New York

Cyclopropyl- and Cyclobutylboronates and -silanes: A Stereo­selective Approach

Víctor Martín-Heras
a   Departamento de Química Orgánica, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
,
Alejandro Parra
a   Departamento de Química Orgánica, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
b   Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28049 Madrid, Spain   Email: mariola.tortosa@uam.es
,
Mariola Tortosa*
a   Departamento de Química Orgánica, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
b   Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28049 Madrid, Spain   Email: mariola.tortosa@uam.es
› Author Affiliations
We thank the European Research Council (ERC-337776) and MINECO (CTQ2016-78779-R) for financial support. M.T. thanks MICINN for a RyC contract. V.M.-H. thanks UAM for a predoctoral fellowship.
Further Information

Publication History

Received: 01 September 2017

Accepted after revision: 19 October 2017

Publication Date:
14 December 2017 (online)


Abstract

Chiral cyclopropyl- and cyclobutylboronic esters and -silanes have become attractive intermediates for the preparation of functionalized small rings. This review highlights the stereoselective methods developed for their preparation, including both diastereo- and enantio­selective approaches.

1 Introduction

2 Stereoselective Synthesis of Cyclopropyl- and Cyclobutylboronates and -silanes

2.1 Diastereoselective Synthesis of Cyclopropyl- and Cyclobutylboronates and -silanes

2.2 Asymmetric Synthesis of Cyclopropyl- and Cyclobutylboronates and -silanes

3 Conclusions

 
  • References

    • 1a Liu H. Walsh CT. Biochemistry of the Cyclopropyl Group . In The Chemistry of the Cyclopropyl Group . Patai S. Rappaport Z. Wiley; Chichester: 1987: 959
    • 1b Donaldson WA. Tetrahedron 2001; 57: 8589
    • 1c Pietruszka J. Chem. Rev. 2003; 103: 1051
    • 1d Wessjohann LA. Brandt W. Chem. Rev. 2003; 103: 1625
    • 1e Gagnon A. Duplessis M. Fader L. Org. Prep. Proced. Int. 2010; 42: 1
    • 1f Chen DY.-K. Pouwer RH. Richard JA. Chem. Soc. Rev. 2012; 41: 4631
    • 1g Taylor RD. MacCoss M. Lawson AD. G. J. Med. Chem. 2014; 57: 5845
    • 1h Charette AE. Lebel H. Roy M.-N. Asymmetric Cyclopropanation and Aziridination Reactions . In Copper-Catalyzed Asymmetric Synthesis . 5th ed.: Alexakis A. Krause N. Woodward S. Wiley-VCH; Weinheim: 2014: 203
    • 1i Chanthamath S. Iwasa S. Acc. Chem. Res. 2016; 49: 2080
    • 1j Ganesh V. Chandrasekaran S. Synthesis 2016; 48: 4347
    • 1k Pons A. Poisson T. Pannecoucke X. Charette AE. Jubault P. Synthesis 2016; 48: 4060
    • 1l Bos M. Poisson T. Pannecoucke X. Charette AE. Jubault P. Chem. Eur. J. 2017; 23: 4950
    • 2a Lee-Ruff E. Mladenova G. Chem. Rev. 2003; 103: 1449
    • 2b Namyslo JC. Kaufmann DE. Chem. Rev. 2003; 103: 1485
    • 2c Hoffmann N. Chem. Rev. 2008; 108: 1052
    • 2d Bach T. Hehn JP. Angew. Chem. Int. Ed. 2011; 50: 1000
    • 2e Seiser T. Saget T. Tran DN. Cramer N. Angew. Chem. Int. Ed. 2011; 50: 7740
    • 2f Xu Y. Conner ML. Brown MK. Angew. Chem. Int. Ed. 2015; 54: 11918
    • 2g Poplata S. Tröster A. Zou Y.-Q. Bach T. Chem. Rev. 2016; 116: 9748
    • 4a Sergeiko A. Poroikov VV. Hanus LO. Dembitsky VM. Open Med. Chem. J. 2008; 2: 26
    • 4b Blakemore DC. Bryans JS. Carnell P. Carr CL. Chessum NE. A. Field MJ. Kinsella N. Osborne SA. Warren NA. Williams SC. Bioorg. Med. Chem. Lett. 2010; 20: 461
    • 4c Talele TT. J. Med. Chem. 2016; 59: 8712
  • 5 Schröder F. Chemistry & Biodiversity 2014; 11: 1734
    • 6a Colvin EW. Silicon Reagents in Organic Synthesis . Academic Press; London: 1988
    • 6b Chemistry of Organosilicon Compounds . Rappoport Z. Apeloig Y. Wiley-VCH; Weinheim: 2001. , Vol. 3
    • 6c Bains W. Tacke R. Curr. Opin. Drug Discovery Dev. 2003; 6: 526
    • 6d Showwell GA. Mills JS. Drug Discovery Today 2003; 8: 551
    • 6e Mortensen M. Husmann R. Veri E. Bolm C. Chem. Soc. Rev. 2009; 38: 1002
    • 7a Boronic Acids: Preparation and Applications in Organic Synthesis and Medicine. Hall D. Wiley-VCH; Weinheim: 2005
    • 7b Zhou S.-M. Deng M.-Z. Xia L.-J. Tang M.-H. Angew. Chem. Int. Ed. 1998; 37: 2845
    • 7c Chen H. Deng M.-Z. Org. Lett. 2000; 2: 1649
    • 7d Doucet H. Eur. J. Org. Chem. 2008; 2013

      For selected examples on C–B to C–N transformation:
    • 8a Pietruszka J. Solduga G. Synlett 2008; 1349
    • 8b Pietruszka J. Solduga G. Eur. J. Org. Chem. 2009; 5998
    • 8c Zhong C. Kunni S. Kosaka Y. Sawamura M. Ito H. J. Am. Chem. Soc. 2010; 132: 11440
    • 8d Liskey CW. Hartwig JF. J. Am. Chem. Soc. 2013; 135: 3375
    • 8e Racine E. Monnier F. Vors J.-P. Taillefer M. Chem. Commun. 2013; 49: 7412
    • 8f Shibue T. Fukuda Y. Tetrahedron Lett. 2014; 55: 4102
    • 8g Nguyen TH. Morris SA. Zheng N. Adv. Synth. Catal. 2014; 356: 2831
    • 8h Mori-Quiroz LM. Shimkin KW. Rezazadeh S. Kozlowski RA. Watson DA. Chem. Eur. J. 2016; 22: 15654

    • For selected examples on homologation:
    • 8i Murakami R. Tsunoda K. Iwai T. Sawamura M. Chem. Eur. J. 2014; 20: 13127
    • 8j Rasappan R. Aggarwal VK. Nat. Chem. 2014; 6: 810
    • 8k Lin H. Tian L. Krauss IJ. J. Am. Chem. Soc. 2015; 137: 13176
  • 9 Danheiser RL. Savoca AC. J. Org. Chem. 1985; 50: 2401
    • 10a Fontani P. Carboni B. Vaultier M. Carrie R. Tetrahedron Lett. 1989; 30: 4815
    • 10b Fontani P. Carboni B. Vaultier M. Maas G. Synthesis 1991; 605
    • 12a Markó IE. Giard T. Sumida S. Gies A.-E. Tetrahedron Lett. 2002; 43: 2317
    • 12b Markó IE. Kumamoto T. Giard T. Adv. Synth. Catal. 2002; 344: 1063
  • 13 Berthon-Gelloz G. Marchant M. Straub BF. Marko IE. Chem. Eur. J. 2009; 15: 2923
  • 14 Fujioka Y. Amii H. Org. Lett. 2008; 10: 769
  • 15 Hussain MM. Li H. Hussain N. Ureña M. Carroll PJ. Walsh PJ. J. Am. Chem. Soc. 2009; 131: 6516
    • 16a Waas JR. Sidduri A. Knochel P. Tetrahedron Lett. 1992; 33: 3717
    • 16b Deloux L. Skrzypczak-Jankun E. Cheesman BV. Srebnik M. Sabat M. J. Am. Chem. Soc. 1994; 116: 10302
    • 16c Deloux L. Srebnik M. J. Org. Chem. 1994; 59: 6871
    • 16d Deloux L. Srebnik M. Sabat M. J. Org. Chem. 1995; 60: 3276
    • 16e Molander GA. Ellis NM. J. Org. Chem. 2008; 73: 6841
  • 17 Benoit G. Charette AB. J. Am. Chem. Soc. 2017; 139: 1364
  • 18 Kawachi A. Maeda H. Tamao K. Chem. Lett. 2000; 1216
  • 19 Freifeld I. Langer P. Org. Lett. 2001; 3: 3903
  • 20 Hazra CK. Gandhamsetty N. Park S. Chang S. Nat. Commun. 2016; 7: 13431
    • 21a Hu L. Zhao G. Hao W. Tang X. Sun Y. Lin L. Liub S. RSC Adv. 2012; 2: 11184
    • 21b Van Putten R. Van der Waal J. Jong E. Rasrendra CB. Heeres HJ. de Vries JG. Chem. Rev. 2013; 113: 1499
  • 22 Bubnov YN. Nesmeyanova OA. Rudashevakaya TY. Mikhailov BM. Kazansky BA. Tetrahedron Lett. 1971; 2153
  • 23 Stoll AT. Negishi E.-I. Tetrahedron Lett. 1985; 26: 5671
  • 24 Rubina M. Rubin M. Gevorgyan V. J. Am. Chem. Soc. 2002; 124: 11566
  • 25 Parra A. Amenós L. Guisán-Ceinos M. López A. García Ruano JL. Tortosa M. J. Am. Chem. Soc. 2014; 136: 15833
  • 26 Hong K. Liu X. Morken JP. J. Am. Chem. Soc. 2014; 136: 10581
  • 27 Miyamura S. Araki M. Suzuki T. Yamaguchi J. Itami K. Angew. Chem. Int. Ed. 2015; 54: 846
  • 28 Miyamura S. Araki M. Ota Y. Itoh Y. Yasuda S. Masuda M. Taniguchi T. Sowa Y. Sakai T. Suzuki T. Itami K. Yamaguchi J. Org. Biomol. Chem. 2016; 14: 8576
  • 29 He J. Jiang H. Takise R. Zhu R.-Y. Chen G. Dai H.-X. Dhar TG. M. Shi J. Zhang H. Cheng PT. W. Yu JQ. Angew. Chem. Int. Ed. 2016; 55: 785
  • 30 Ito H. Toyoda T. Sawamura M. J. Am. Chem. Soc. 2010; 132: 5990
  • 31 Imai T. Mineta H. Nishida S. J. Org. Chem. 1990; 55: 4986
    • 32a Luithle JE. A. Pietruszka J. Liebigs Ann./Recl. 1997; 2297
    • 32b Pietruszka J. Widenmeyer M. Synlett 1997; 977
    • 32c Luithle JE. A. Pietruszka J. Witt A. Chem. Commun. 1998; 2651
    • 32d Luithle JE. A. Pietruszka J. J. Org. Chem. 1999; 64: 8287
    • 32e Luithle JE. A. Pietruszka J. Eur. J. Org. Chem. 2000; 2557
    • 32f Luithle JE. A. Pietruszka J. J. Org. Chem. 2000; 65: 9194
    • 32g Luithle JE. A. Pietruszka J. Eur. J. Org. Chem. 2003; 3219
    • 32h Pietruszka J. Witt A. Synlett 2003; 91
    • 32i Honh E. Paleček J. Pietruszka J. Frey W. Eur. J. Org. Chem. 2009; 3765
    • 32j For a review, see: Berg CA. Eichenauer NC. Pietruszka J. Pure Appl. Chem. 2012; 84: 2339
  • 33 Hohn E. Pietruszka J. Adv. Synth. Catal. 2004; 346: 863
  • 34 Barluenga J. Fañanás FJ. Sanz R. Marcos C. Org. Lett. 2002; 4: 2225
  • 35 Ito H. Kosaka Y. Nonoyama K. Sasaki Y. Sawamura M. Angew. Chem. Int. Ed. 2008; 47: 7424
  • 36 Rubina M. Rubin M. Gevorgyan V. J. Am. Chem. Soc. 2003; 125: 7198
  • 37 Rubina M. Rubin M. Gevorgyan V. J. Am. Chem. Soc. 2004; 126: 3688
  • 38 Liu X. Fox JM. J. Am. Chem. Soc. 2006; 128: 5600
  • 39 Tian B. Liu Q. Tong X. Tian P. Lin G.-Q. Org. Chem. Front. 2014; 1: 1116
  • 40 Man H.-W. Hiscox WC. Matteson DS. Org. Lett. 1999; 1: 379
  • 41 Coote CS. Bach T. J. Am. Chem. Soc. 2013; 135: 14948
  • 42 Guisán-Ceinos M. Parra A. Martín-Heras V. Tortosa M. Angew. Chem. Int. Ed. 2016; 55: 6969
  • 43 Logan KM. Brown K. Angew. Chem. Int. Ed. 2017; 56: 851
  • 44 He J. Shao Q. Wu Q. Yu J.-Q. J. Am. Chem. Soc. 2017; 139: 3344