Synthesis 2018; 50(04): 685-699
DOI: 10.1055/s-0036-1589521
review
© Georg Thieme Verlag Stuttgart · New York

Synthesis of Tricyclic Marine Alkaloids, Cylindricines, Lepadiformines, Fasicularin, and Polycitorols: A Recent Update

Atsushi Kaga
Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore   eMail: shunsuke@ntu.edu.sg
,
Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore   eMail: shunsuke@ntu.edu.sg
› Institutsangaben
This work was supported by funding from Nanyang Technological University (NTU) and the Singapore Ministry of Education (Academic Research Fund Tier 1: 2015-T1-001-040).
Weitere Informationen

Publikationsverlauf

Received: 31. August 2017

Accepted after revision: 27. September 2017

Publikationsdatum:
14. Dezember 2017 (online)


Abstract

Cylindricines, lepadiformines, and fasicularin are tricyclic marine alkaloids bearing perhydropyrrolo- and pyrido[2,1-j] frameworks having divergent chemical functionalities. They have been isolated from marine tunicates over the last two decades and found to have a range of cytotoxicity such as DNA-alkylating ability. Recently, polycitorols have emerged as a new member of this alkaloid family. Their unique structural features and biological activities have intrigued many researchers and challenged them in their synthesis. This review describes recent syntheses of the tricyclic alkaloids based on key synthetic approaches.

1 Introduction

2 Total and Formal Syntheses

2.1 Overview of Synthetic Strategies

2.2 Azaspirocycle (BC Ring) Approaches

2.3 Indolizidine (AC Ring) Approaches

2.4 Azadecalin (AB Ring) Approaches

2.5 Tandem Cyclization Approaches

3 Summary and Future Perspective

 
  • References


    • For recent reviews on marine natural products, see:
    • 1a Palanisamy SK. Rajendran NM. Marino A. Nat. Prod. Bioprospect. 2017; 7: 1
    • 1b Blunt JW. Copp BR. Keyzers RA. Munro MH. G. Prinsep MR. Nat. Prod. Rep. 2017; 34: 235
    • 1c Blunt JW. Copp BR. Keyzers RA. Munro MH. G. Prinsep MR. Nat. Prod. Rep. 2016; 33: 382
    • 1d Blunt JW. Copp BR. Keyzers RA. Munro MH. G. Prinsep MR. Nat. Prod. Rep. 2015; 32: 116
    • 1e Blunt JW. Copp BR. Keyzers RA. Munro MH. G. Prinsep MR. Nat. Prod. Rep. 2014; 31: 160
    • 1f Morris JC. Nat. Prod. Rep. 2013; 30: 783
    • 1g Blunt JW. Copp BR. Keyzers RA. Munro MH. G. Prinsep MR. Nat. Prod. Rep. 2013; 30: 237
    • 1h Blunt JW. Copp BR. Keyzers RA. Munro MH. G. Prinsep MR. Nat. Prod. Rep. 2012; 29: 144
    • 1i Menna M. Fattorusso E. Imperatore C. Molecules 2011; 16: 8694
  • 2 Blackman AJ. Li C. Hockless DC. R. Skelton BW. White AH. Tetrahedron 1993; 49: 8645
    • 3a Li C. Blackman AJ. Aust. J. Chem. 1995; 48: 955
    • 3b Li C. Blackman AJ. Aust. J. Chem. 1994; 47: 1355

      For reports on asymmetric syntheses of cylindricines, see:
    • 4a Liu J. Swidorski JJ. Peters SD. Hsung RP. J. Org. Chem. 2005; 70: 3898
    • 4b Abe H. Aoyagi S. Kibayashi C. J. Am. Chem. Soc. 2005; 127: 1473
    • 4c Liu J. Hsung RP. Peters SD. Org. Lett. 2004; 6: 3989
    • 4d Canesi S. Bouchu D. Ciufolini MA. Angew. Chem. Int. Ed. 2004; 43: 4336
    • 4e Arai T. Abe H. Aoyagi S. Kibayashi C. Tetrahedron Lett. 2004; 45: 5921
    • 4f Trost BM. Rudd MT. Org. Lett. 2003; 5: 4599
    • 4g Molander GA. Rönn M. J. Org. Chem. 1999; 64: 5183
  • 5 Biard J.-F. Guyot S. Roussakis C. Verbist J.-F. Vercauteren J. Weber JF. Boukef K. Tetrahedron Lett. 1994; 35: 2691
  • 6 Abe H. Aoyagi S. Kibayashi C. J. Am. Chem. Soc. 2000; 122: 4583
    • 7a Abe H. Aoyagi S. Kibayashi C. Angew. Chem. Int. Ed. 2002; 41: 3017
    • 7b Sun P. Sun C. Weinreb SM. J. Org. Chem. 2002; 67: 4337
  • 8 Sauviat M.-P. Vercauteren J. Grimaud N. Jugé M. Nabil M. Petit J.-Y. Biard J.-F. J. Nat. Prod. 2006; 69: 558
  • 9 Jugé M. Grimaud N. Biard J.-F. Sauviat M.-P. Nabil M. Verbist J.-F. Petit J.-Y. Toxicon 2001; 39: 1231
  • 10 Patil AD. Freyer AJ. Reichwein R. Carte B. Killmer LB. Faucette L. Johnson RK. Faulkner DJ. Tetrahedron Lett. 1997; 38: 363
  • 11 Dutta S. Abe H. Aoyagi S. Kibayashi C. Gates KS. J. Am. Chem. Soc. 2005; 127: 15004
  • 12 Issa HH. Tanaka J. Rachmat R. Setiawan A. Trianto A. Higa T. Mar. Drugs 2005; 3: 78
    • 13a Weinreb SM. Chem. Rev. 2006; 106: 2531
    • 13b Schär P. Cren S. Renaud P. Chimia 2006; 60: 131
    • 13c Kibayashi C. Chem. Pharm. Bull. 2005; 53: 1375
    • 13d Weinreb SM. Acc. Chem. Res. 2003; 36: 59
    • 13e Kibayashi C. Aoyagi S. Abe H. Bull. Chem. Soc. Jpn. 2003; 76: 2059
  • 14 Caldwell JJ. Craig D. Angew. Chem. Int. Ed. 2007; 46: 2631
    • 16a Perry MA. Morin MD. Slafer BW. Rychnovsky SD. J. Org. Chem. 2012; 77: 3390
    • 16b Perry MA. Morin MD. Slafer BW. Wolckenhauer SA. Rychnovsky SD. J. Am. Chem. Soc. 2010; 132: 9591
    • 17a Perry MA. Hill RR. Leong JJ. Rychnovsky SD. Org. Lett. 2015; 17: 3268
    • 17b Perry MA. Rychnovsky SD. Nat. Prod. Rep. 2015; 32: 517 ; and references therein
    • 18a Grierson DS. Harris M. Husson H.-P. J. Am. Chem. Soc. 1980; 102: 1064
    • 18b Cave A. Kan-Fan C. Potier P. Le Men J. Tetrahedron 1967; 23: 4681
  • 19 Mei S.-L. Zhao G. Eur. J. Org. Chem. 2010; 1660

    • For recent reviews on the application of N-tert-butanesulfinamides, see:
    • 20a Robak MT. Herbage MA. Ellman JA. Chem. Rev. 2010; 110: 3600
    • 20b Ferreira F. Botuha C. Chemla F. Pérez-Luna A. Chem. Soc. Rev. 2009; 38: 1162
    • 20c Lin G.-Q. Xu M.-H. Zhong Y.-W. Sun X.-W. Acc. Chem. Res. 2008; 41: 831
  • 21 Pandey G. Janakiram V. Chem. Eur. J. 2015; 21: 13120
    • 22a Pronin SV. Tabor MG. Jansen DJ. Shenvi RA. J. Am. Chem. Soc. 2012; 134: 2012
    • 22b Scheideman M. Wang G. Vedejs E. J. Am. Chem. Soc. 2008; 130: 8669
    • 22c Scheideman M. Shapland P. Vedejs E. J. Am. Chem. Soc. 2003; 125: 10502
  • 23 Tabor MG. Shenvi RA. Org. Lett. 2015; 17: 5776
  • 24 Kaga A. Tnay YL. Chiba S. Org. Lett. 2016; 18: 3506

    • For reports on regio- and stereoselective ring opening of unactivated aziridines, see:
    • 26a Lee J. Lee JE. Ha H.-J. Son SI. Lee WK. Tetrahedron Lett. 2015; 56: 856
    • 26b Ji M.-K. Hertsen D. Yoon D.-H. Eum H. Goossens H. Waroquier M. Van Speybroeck V. D’hooghe M. De Kimpe N. Ha H.-J. Chem. Asian J. 2014; 9: 1060 ; and references therein
  • 27 Burnley J. Wang ZJ. Jackson WR. Robinson AJ. J. Org. Chem. 2017; 82: 8497
    • 28a Wang ZJ. Spiccia ND. Gartshore CJ. Illesinghe J. Jackson WR. Robinson AJ. Synthesis 2013; 45: 3118
    • 28b Wang ZJ. Jackson WR. Robinson AJ. Org. Lett. 2013; 15: 3006
  • 29 Fujitani M. Tsuchiya M. Okano K. Takasu K. Ihara M. Tokuyama H. Synlett 2010; 822
  • 30 For a recent review on radical translocation–cyclization processes, see: Dénès F. Beaufils F. Renaud P. Synlett 2008; 2389
    • 31a Nishikawa K. Yamauchi K. Kikuchi S. Ezaki S. Koyama T. Nokubo H. Matsumura K. Kodama T. Kumagai M. Morimoto Y. Chem. Eur. J. 2017; 23: 9535
    • 31b Nishikawa K. Kikuchi S. Ezaki S. Koyama T. Nokubo H. Kodama T. Tachi Y. Morimoto Y. Org. Lett. 2015; 17: 5772
    • 32a Chida N. Ohtsuka M. Ogura K. Ogawa S. Bull. Chem. Soc. Jpn. 1991; 64: 2118
    • 32b Ferrier RJ. J. Chem. Soc., Perkin Trans. 1 1979; 1455
  • 33 Okada K. Okubo K. Oda M. J. Photochem. Photobiol. A: Chem. 1991; 57: 265
    • 34a Flick AC. Caballero MJ. A. Padwa A. Tetrahedron 2010; 66: 3643
    • 34b Flick AC. Caballero MJ. A. Padwa A. Org. Lett. 2008; 10: 1871
    • 35a Stearman CJ. Wilson M. Padwa A. J. Org. Chem. 2009; 74: 3491
    • 35b Wilson MS. Padwa A. J. Org. Chem. 2008; 73: 9601
    • 35c Padwa A. Watterson SH. Ni Z. Org. Synth. 1997; 74: 147
    • 35d Norman BH. Gareau Y. Padwa A. J. Org. Chem. 1991; 56: 2154
    • 35e Padwa A. Norman BH. Tetrahedron Lett. 1988; 29: 2417
    • 36a Murphy A. Stack TD. P. J. Mol. Catal. A: Chem 2006; 251: 78
    • 36b Murphy A. Pace A. Stack TD. P. Org. Lett. 2004; 6: 3119
  • 37 White JD. Hansen JD. J. Org. Chem. 2005; 70: 1963
  • 38 Donohoe TJ. Johnson DJ. Mace LH. Bamford MJ. Ichihara O. Org. Lett. 2005; 7: 435
    • 39a In J. Lee S. Kwon Y. Kim S. Chem. Eur. J. 2014; 20: 17433
    • 39b Lee M. Lee T. Kim E.-Y. Ko H. Kim D. Kim S. Org. Lett. 2006; 8: 745
  • 40 Stevens RV. Acc. Chem. Res. 1984; 17: 289
    • 41a Huang-Minlon J. Am. Chem. Soc. 1949; 71: 3301
    • 41b Huang-Minlon J. Am. Chem. Soc. 1946; 68: 2487
    • 42a Métro T.-X. Pardo DG. Cossy J. J. Org. Chem. 2007; 72: 6556
    • 42b Cossy J. Dumas C. Pardo DG. Eur. J. Org. Chem. 1999; 1693
  • 43 Lee S. Bae M. In J. Kim JH. Kim S. Org. Lett. 2017; 19: 254

    • For reviews on memory of chirality, see:
    • 44a Alezra V. Kawabata T. Synthesis 2016; 48: 2997
    • 44b Campolo D. Gastaldi S. Roussel C. Bertrand MP. Nechab M. Chem. Soc. Rev. 2013; 42: 8434
    • 44c Zhao H. Hsu DC. Carlier PR. Synthesis 2005; 1
    • 44d Kawabata T. Fuji K. Top. Stereochem. 2003; 23: 175
    • 45a Amat M. Llor N. Hidalgo J. Escolano C. Bosch J. J. Org. Chem. 2003; 68: 1919
    • 45b Amat M. Hidalgo J. Llor N. Bosch J. Tetrahedron: Asymmetry 1998; 9: 2419
  • 46 Parikh JR. Doering WE. J. Am. Chem. Soc. 1967; 89: 5505
  • 47 Donohoe TJ. Brian PM. Hargaden GC. O’Riordan TJ. C. Tetrahedron 2010; 66: 6411
  • 48 Donohoe TJ. Johnson DJ. Mace LH. Thomas RE. Chiu JY. K. Rodrigues JS. Compton RG. Banks CE. Tomcik P. Bamford MJ. Ichihara O. Org. Biomol. Chem. 2006; 4: 1071
  • 49 Snider BB. Liu T. J. Org. Chem. 1997; 62: 5630
  • 50 Corey EJ. Chaykovsky M. J. Am. Chem. Soc. 1965; 87: 1353
  • 51 Weidner K. Giroult A. Panchaud P. Renaud P. J. Am. Chem. Soc. 2010; 132: 17511
  • 52 Lapointe G. Kapat A. Weidner K. Renaud P. Pure Appl. Chem. 2012; 84: 1633
  • 53 Schär P. Renaud P. Org. Lett. 2006; 8: 1569
  • 54 Meyer AM. Katz CE. Li S.-W. Velde DV. Aubé J. Org. Lett. 2010; 12: 1244
    • 55a Ethirajan M. Oh H.-S. Cha JK. Org. Lett. 2007; 9: 2693
    • 55b Lysenko IL. Oh H.-S. Cha JK. J. Org. Chem. 2007; 72: 7903
    • 55c Oh H.-S. Lee HI. Cha JK. Org. Lett. 2002; 4: 3707
    • 55d Trost BM. Chen DW. C. J. Am. Chem. Soc. 1996; 118: 12541
    • 55e Trost BM. Lee DC. J. Am. Chem. Soc. 1988; 110: 6556
  • 56 For a recent review of the intramolecular Schmidt reaction, see: Grecian S. Aubé J. In Organic Azides: Syntheses and Applications . Bräse S. Banert K. John Wiley and Sons; Chichester: 2009: 191
  • 57 Lapointe G. Schenk K. Renaud P. Org. Lett. 2011; 13: 4774
  • 58 Bartra M. Romea P. Urpí F. Vilarrasa J. Tetrahedron 1990; 46: 587
  • 59 Lygo B. Kirton EH. M. Lumley C. Org. Biomol. Chem. 2008; 6: 3085
  • 60 For a recent review on aza-Diels–Alder reaction in natural product synthesis, see: Cao M.-H. Green NJ. Xu S.-Z. Org. Biomol. Chem. 2017; 15: 3105
    • 61a Mihara H. Shibuguchi T. Kuramochi A. Ohshima T. Shibasaki M. Heterocycles 2007; 72: 421
    • 61b Shibuguchi T. Mihara H. Kuramochi A. Sakubara S. Ohshima T. Shibasaki M. Angew. Chem. Int. Ed. 2006; 45: 4635
    • 62a Okada A. Shibuguchi T. Ohshima T. Masu H. Yamaguchi K. Shibasaki M. Angew. Chem. Int. Ed. 2005; 44: 4564
    • 62b Fukuta Y. Ohshima T. Gnanadesikan V. Shibuguchi T. Nemoto T. Kisugi T. Okino T. Shibasaki M. Proc. Natl. Acad. Sci. U.S.A. 2004; 101: 5433
    • 62c Ohshima T. Shibuguchi T. Fukuta Y. Shibasaki M. Tetrahedron 2004; 60: 7743
    • 62d Shibuguchi T. Fukuta Y. Akachi Y. Sekine A. Ohshima T. Shibasaki M. Tetrahedron Lett. 2002; 43: 9539

      For recent reviews on divergent total synthesis of natural products, see:
    • 63a Shimokawa J. Tetrahedron Lett. 2014; 55: 6156
    • 63b Anagnostaki EE. Zografos AL. Chem. Soc. Rev. 2012; 41: 5613