Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2017; 28(07): 805-810
DOI: 10.1055/s-0036-1589953
DOI: 10.1055/s-0036-1589953
letter
Magnetic Attachment of Lipase Immobilized on Bacteriogenic Iron Oxide Inside a Microtube Reactor for the Kinetic Resolution of Secondary Alcohols
Further Information
Publication History
Received: 17 November 2016
Accepted after revision: 27 December 2016
Publication Date:
24 January 2017 (online)
Abstract
A PTFE microtube reactor was constructed with lipase immobilized on magnetized bacteriogenic iron oxide, which was retained inside of the tube by attraction to an external magnet. The reactor was used for the lipase-promoted kinetic resolution of secondary alcohols and gave sufficient catalytic activity, which was maintained during long-term flow over 14 days.
Supporting Information
- Supporting information for this article is available online at http://dx.doi.org/10.1055/s-0036-1589953.
- Supporting Information
-
References and Notes
- 1a Spring S In The Prokaryotes. Vol. 5. Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E. Springer; New York: 2006: 758
- 1b Emerson D, Fleming EJ, McBeth JM. Annu. Rev. Microbiol. 2010; 64: 561
- 1c Ghiorse WC. Annu. Rev. Microbiol. 1984; 38: 515
- 2a Hashimoto H, Yokoyama S, Asaoka H, Kusano Y, Ikeda Y, Seno M, Takada J, Fujii T, Nakanishi M, Murakami R. J. Magn. Magn. Mater. 2007; 310: 2405
- 2b Ema T, Miyazaki Y, Kozuki I, Sakai T, Hashimoto H, Takada J. Green Chem. 2011; 13: 3187
- 3 Hashimoto H, Kobayashi G, Sakuma R, Fujii T, Hayashi N, Suzuki T, Kanno R, Takano M, Takada J. ACS Appl. Mater. Interfaces 2014; 6: 5374
- 4 Hashimoto H, Fujii T, Kohara S, Asaoka H, Kusano Y, Ikeda Y, Nakanishi M, Benino Y, Nanba T, Takada J. Mater. Chem. Phys. 2012; 137: 571
- 5a Suzuki T, Hashimoto H, Ishihara H, Kasai T, Kunoh H, Takada J. Appl. Environ. Microbiol. 2011; 77: 7873
- 5b Ishihara H, Hashimoto H, Takeda E, Suzuki T, Mandai K, Kunoh H, Takada J. Minerals 2014; 4: 565
- 6 Sakuma R, Hashimoto H, Kobayashi G, Fujii T, Nakanishi M, Kanno R, Takano M, Takada J. Mater. Lett. 2015; 139: 414
- 7 Hashimoto H, Asaoka H, Nakano T, Kusano Y, Ishihara H, Ikeda Y, Nakanishi M, Fujii T, Yokoyama T, Horiishi N, Nanba T, Takada J. Dyes Pigm. 2012; 95: 639
- 8 Mandai K, Hanata M, Mitsudo K, Mandai H, Suga S, Hashimoto H, Takada J. Tetrahedron 2015; 71: 9403
- 9 Sakai T, Miyazaki Y, Murakami A, Sakamoto N, Ema T, Hashimoto H, Furutani M, Nakanishi M, Fujii T, Takada J. Org. Biomol. Chem. 2010; 8: 336
- 10 Mandai K, Korenaga T, Ema T, Sakai T, Furutani M, Hashimoto H, Takada J. Tetrahedron Lett. 2012; 53: 329
- 11 Ema T, Miyazaki Y, Taniguchi T, Takada J. Green Chem. 2013; 15: 2485
- 12a Hashimoto H, Fujii T, Nakanishi M, Kusano Y, Ikeda Y, Takada J. Mater. Chem. Phys. 2012; 136: 1156
- 12b Hashimoto H, Itadani A, Fujii T, Nakanishi M, Asaoka H, Kusano Y, Ikeda Y, Kuroda Y, Takada J. Mater. Res. Bull. 2013; 48: 1174
- 12c Hashimoto H, Fujii T, Kohara S, Nakanishi K, Yogi C, Peterlik H, Nakanishi M, Takada J. Mater. Chem. Phys. 2015; 155: 67
- 13a Yoshida J, Saito K, Nokami T, Nagaki A. Synlett 2011; 1189
- 13b Suga S, Yamada D, Yoshida J. Chem. Lett. 2010; 39: 404
- 14a Yoshida J, Nagaki A, Yamada D. Drug Discovery Today 2013; 10: e53
- 14b Fukuyama T, Rahman MT, Sato M, Ryu I. Synlett 2008; 151
- 14c Ahmed-Omer B, Brandt J, Wirth T. Org. Biomol. Chem. 2007; 5: 733
- 14d Watts P, Haswell SJ. Chem. Soc. Rev. 2005; 34: 235
- 15a Yoshida J, Takahashi Y, Nagaki A. Chem. Commun. 2013; 49: 9896
- 15b Kim H, Nagaki A, Yoshida J. Nat. Commun. 2011; 2: 264
- 16a Tanaka T, Fukase K. Beilstein J. Org. Chem. 2009; 5: 40
- 16b Tanaka T, Fukase K. Org. Process Res. Dev. 2009; 13: 983
- 17a Tsubogo T, Oyamada H, Kobayashi S. Nature 2015; 520: 329
- 17b Pastre JC, Browne DL, Ley SV. Chem. Soc. Rev. 2013; 42: 8849
- 18 Uozumi Y, Yamada YM. A, Beppu T, Fukuyama N, Ueno M, Kitamori T. J. Am. Chem. Soc. 2006; 128: 15994
- 19a Yoshida J, Kim H, Nagaki A. ChemSusChem 2011; 4: 331
-
19b Mason BM, Price KE, Steinbacher JL, Bogdan AR, McQuade DT. Chem. Rev. 2007; 107: 2300
- 20a Park CP, Kim D.-P. Angew. Chem. Int. Ed. 2010; 49: 6825
- 20b Jeong G.-Y, Singh AK, Sharma S, Gyak KW, Maurya RA, Kim D.-P. NPG Asia Mater. 2015; 7: e173
- 21a Li Y, Xu X, Yan B, Deng C, Yu W, Yang P, Zhang X. J. Proteome Res. 2007; 6: 2367
-
21b Liu J, Lin S, Qi D, Deng C, Yang P, Zhang X. J. Chromatogr., A 2007; 1176: 169
- 21c Li Y, Yan B, Deng C, Yu W, Xu X, Yang P, Zhang X. Proteomics 2007; 7: 2330
- 21d Liu X, Lo RC, Gomez FA. Electrophoresis 2009; 30: 2129
- 21e Riveros TA, Lo R, Liu X, Valdez A, Lozano M, Gomez FA. Am. Lab. 2010; 42: 11
- 21f Yu D, Antwerpen PV, Patris S, Blankert B, Kauffmann J.-M. Comb. Chem. High Throughput Screening 2010; 13: 455
- 21g Yan X, Gilman SD. Electrophoresis 2010; 31: 346
- 21h Sheng J, Zhang L, Lei J, Ju H. Anal. Chim. Acta 2012; 709: 41
- 22 Nomura A, Shin S, Mehdi OO, Kauffmann JM. Anal. Chem. 2004; 76: 5498
- 23 Li Y, Yan B, Deng CH, Yu WJ, Xu XQ, Yang PY, Zhang XM. Proteomics 2007; 7: 2330
- 24a Kawakami K, Ueno M, Takei T, Oda Y, Takahashi R. Process Biochem. (Oxford, U. K.) 2012; 47: 147
- 24b Kawakami K, Abe D, Urakawa T, Kawashima A, Oda Y, Takahashi R, Sakai SJ. Sep. Sci. Technol. (Philadelphia, PA, U. S.) 2007; 30: 3077
-
24c Kawakami K, Sera Y, Sakai S, Ono T, Ijima H. Ind. Eng. Chem. Res. 2005; 44: 236
- 24d Kataoka S, Takeuchi Y, Harada A, Yamada M, Endo A. Green Chem. 2010; 12: 331
-
24e Andrade LH, Kroutil W, Jamison TF. Org. Lett. 2014; 16: 6092
- 25 Typical procedure for construction of the microtube reactor: The tube was placed in a narrow groove cut into a wooden block (ca. 10 cm long) with almost the same width as the tube. One side of the tube (40 cm) was connected to a diaphragm pump via a PEEK connector and BCL/m-BIO-M (2 or 4 mg) was sucked from the other side. BCL/m-BIO-M was retained by the magnetic interaction with an external assembly of neodymium magnets placed at a middle part of the tube. The tube, wooden stick, and the magnets were put on a wire-woven base in a water bath filled with water (30 °C). The tube was then connected to a gas-tight syringe via a PEEK connector, which was filled with alcohol and vinyl acetate in diisopropyl ether, and the syringe was placed on a syringe pump.
- 26 Typical procedure for kinetic resolution of secondary alcohol in the microtube reactor: A gas-tight syringe filled with a solution of the secondary alcohol (0.2 M) and vinyl acetate (0.4 M) in diisopropyl ether was placed on a syringe pump. The solution was fed at a defined flow rate and several drops of the eluent was collected in a sample tube and directly analyzed by HPLC. The enantiomeric excess (ee) values of the ester and unreacted alcohol were obtained by chiral HPLC analysis. The conversion (c) and enantiomeric ratio (E) of kinetic resolution were calculated according to a literature method.27 Kinetic resolution of 1a: The characteristics of the products were consistent with previous data.11 (S)-1a: 1H NMR (CDCl3, 600 MHz): δ = 7.39–7.26 (m, 5 H), 4.91 (q, J = 6.6 Hz, 1 H), 1.51 (d, J = 6.6 Hz, 3 H); HPLC [CHIRALCEL OJ-H; hexane/i-PrOH, 99:1; flow rate 0.5 mL/min; UV detection λ = 254 nm]: Rt = 24.4 (S), 29.0 (R) min. (R)-2a: 1H NMR (CDCl3, 600 MHz): δ = 7.35–7.27 (m, 5 H), 5.89 (q, J = 6.6 Hz, 1 H), 2.07 (s, 3 H), 1.54 (d, J = 6.6 Hz, 3 H); HPLC [CHIRALCEL OJ-H; hexane/i-PrOH, 99:1; flow rate 0.5 mL/min; UV detection λ = 254 nm]: Rt = 60.0 (R), 64.9 (S) min. Kinetic resolution of 1b. The production of (S)-1b and (R)-2a was confirmed by comparison of the 1H NMR spectrum of the crude mixture with those of (S)-1b and (R)-2b reported previously.11 HPLC [CHIRALCEL OJ-H; hexane/i-PrOH, 19:1; flow rate 0.6 mL/min, UV detection λ = 254 nm]: Rt = (S)-1b: 22.4 (S), 26.6 (R) min; (R)-2b: 42.3 (R), 56.5 (S) min.
- 27 Chen C.-S, Fujimoto Y, Girdaukas G, Sih CJ. J. Am. Chem. Soc. 1982; 104: 7294
For reaction integration using a microreactor, see:
For reviews on microflow systems for organic synthesis, see: