Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2018; 29(06): 731-735
DOI: 10.1055/s-0036-1590830
DOI: 10.1055/s-0036-1590830
cluster
Rhodium-Catalyzed C–C Bond Olefination of Ring-Fused Benzocyclobutenols and Application in the Construction of Polycyclic Compounds
C.Z. is grateful for financial support from Soochow University, the National Natural Science Foundation of China (Grant no. 21402134), the Natural Science Foundation of Jiangsu Province (Grant no. BK20140306), and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).Further Information
Publication History
Received: 25 May 2017
Accepted after revision: 14 June 2017
Publication Date:
14 July 2017 (online)
Published as part of the Cluster C–C Activation
Abstract
A novel rhodium-catalyzed C–C bond olefination of ring-fused benzocyclobutenols with ethyl acrylate is described. A variety of versatile olefinated products were efficiently generated at room temperature and then readily converted into many useful polycyclic compounds by one-step processes. The reaction provides a practical C–C bond olefination method with high atom efficiency.
Key words
rhodium catalysis - olefination - polycyclic compounds - atom efficiency - benzocyclobutenolsSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0036-1590830.
- Supporting Information
-
References and Notes
- 1 Rybtchinski BB. Milstein D. Angew. Chem. Int. Ed. 1999; 38: 870
- 2a Jun C.-H. Chem. Soc. Rev. 2004; 33: 610
- 2b Park YJ. Park J.-W. Jun C.-H. Acc. Chem. Res. 2008; 41: 222
- 2c Aїssa C. Synthesis 2011; 3389
- 2d Murakami M. Matsuda T. Chem. Commun. 2011; 47: 1100
- 2e Ruhland K. Eur. J. Org. Chem. 2012; 2683
- 2f Chen F. Wang T. Jiao N. Chem. Rev. 2014; 114: 8613
- 2g Dermenci A. Coe JW. Dong G. Org. Chem. Front. 2014; 1: 567
- 3a Satoh T. Jones WD. Organometallics 2001; 20: 2916
- 3b Nishimura T. Araki H. Maeda Y. Uemura S. Org. Lett. 2003; 5: 2997
- 3c Kita Y. Tobisu M. Chatani N. Org. Lett. 2010; 12: 1864
- 3d Sugihara T. Satoh T. Miura M. Nomura M. Angew. Chem. Int. Ed. 2003; 42: 4672
- 3e Li H. Li Y. Zhang X.-S. Chen K. Wang X. Shi Z.-J. J. Am. Chem. Soc. 2011; 133: 15244
- 4a Sadana AK. Saini RK. Billups WE. Chem. Rev. 2003; 103: 1539
- 4b Seiser T. Cramer N. Org. Biomol. Chem. 2009; 7: 2835
- 4c Seiser T. Saget T. Tran DN. Cramer N. Angew. Chem. Int. Ed. 2011; 50: 7740
- 4d Flores-Gaspar A. Martin R. Synthesis 2013; 45: 563
- 4e Souillart L. Parker E. Cramer N. Top. Curr. Chem. 2014; 346: 163
- 4f Xu T. Dermenci A. Dong G. Top. Curr. Chem. 2014; 346: 233
- 4g Marek I. Masarwa A. Delaye P. Leibeling M. Angew. Chem. Int. Ed. 2015; 54: 414
- 4h Souillart L. Cramer N. Chem. Rev. 2015; 115: 9410
- 4i Fan X. Zhao H. Zhu C. Huaxue Xuebao 2015; 73: 979
- 4j Ren R. Zhu C. Synlett 2016; 27: 1139
- 4k Yan H. Zhu C. Sci. China: Chem. 2017; 60: 214
- 5a Nishimura T. Ohe K. Uemura S. J. Am. Chem. Soc. 1999; 121: 2645
- 5b Nishimura TT. Uemura S. J. Am. Chem. Soc. 1999; 121: 11010
- 5c Nishimura T. Matsumura S. Maeda Y. Uemura S. Chem. Commun. 2002; 50
- 5d Matsumura S. Maeda Y. Nishimura T. Uemura S. J. Am. Chem. Soc. 2003; 125: 8862
- 5e Seiser T. Cramer N. J. Am. Chem. Soc. 2010; 132: 5340
- 5f Chtchemelinine A. Rosa D. Orellana A. J. Org. Chem. 2011; 76: 9157
- 5g Rosa D. Chtchemelinine A. Orellana A. Synthesis 2012; 44: 1885
- 5h Ziadi A. Martin R. Org. Lett. 2012; 14: 1266
- 5i Ziadi A. Correa A. Martin R. Chem. Commun. 2013; 49: 4286
- 5j Ishida N. Nakanishi Y. Murakami M. Angew. Chem. Int. Ed. 2013; 52: 11875
- 5k Xu T. Dong G. Angew. Chem. Int. Ed. 2012; 51: 7567
- 5l Xu T. Ko HM. Savage NA. Dong G. J. Am. Chem. Soc. 2012; 134: 20005
- 5m Xu T. Savage NA. Dong G. Angew. Chem. Int. Ed. 2014; 53: 1891
- 5n Xu T. Dong G. Angew. Chem. Int. Ed. 2014; 53: 10733
- 5o Juliá-Hernández F. Ziadi A. Nishimura A. Martin R. Angew. Chem. Int. Ed. 2015; 54: 9537
- 6a Rocek J. Radkowsky AE. J. Am. Chem. Soc. 1968; 90: 2986
- 6b Meyer K. Rocek J. J. Am. Chem. Soc. 1972; 94: 1209
- 6c Tsunoi S. Ryu I. Tamura Y. Yamasaki S. Sonoda N. Synlett 1994; 1009
- 6d Casey BM. Eakin CA. Flowers RA. II. Tetrahedron Lett. 2009; 50: 1264
- 6e Zhao H. Fan X. Yu J. Zhu C. J. Am. Chem. Soc. 2015; 137: 3490
- 6f Yu J. Zhao H. Liang S. Bao X. Zhu C. Org. Biomol. Chem. 2015; 13: 7924
- 6g Ren R. Zhao H. Huan L. Zhu C. Angew. Chem. Int. Ed. 2015; 54: 12692
- 6h Fan X. Zhao H. Yu J. Bao X. Zhu C. Org. Chem. Front. 2016; 3: 227
- 6i Ren R. Wu Z. Xu Y. Zhu C. Angew. Chem. Int. Ed. 2016; 55: 2866
- 6j Ren R. Wu Z. Zhu C. Chem. Commun. 2016; 52: 8160
- 6k Wang D. Ren R. Zhu C. J. Org. Chem. 2016; 81: 8043
- 6l Huan L. Zhu C. Org. Chem. Front. 2016; 3: 1467
- 6m Wang M. Wu Z. Zhu C. Org. Chem. Front. 2017; 4: 427
- 7 Yu J. Yan H. Zhu C. Angew. Chem. Int. Ed. 2016; 55: 1143
- 8 Ishida N. Sawano S. Murakami M. Nat. Commun. 2014; 5: 3111
- 9a Ishida N. Sawano S. Masuda Y. Murakami M. J. Am. Chem. Soc. 2012; 134: 17502
- 9b Li Y. Lin Z. J. Org. Chem. 2013; 78: 11357
- 9c Ding L. Ishida N. Murakami M. Morokuma K. J. Am. Chem. Soc. 2014; 136: 169
- 9d Xia Y. Liu Z. Liu Z. Ge R. Ye F. Hossain M. Zhang Y. Wang J. J. Am. Chem. Soc. 2014; 136: 3013
- 9e Ishida N. Ishikawa N. Sawano S. Masuda Y. Murakami M. Chem. Commun. 2015; 51: 1882
- 9f Fu X.-F. Xiang Y. Yu Z.-X. Chem. Eur. J. 2015; 21: 4242
- 9g Zhao C. Liu L.-C. Wang J. Jiang C. Zhang Q.-W. He W. Org. Lett. 2016; 18: 328
- 10 Ethyl (2E)-3-[2-(2-Oxocyclohexyl)phenyl]acrylate (3); Typical Procedure A flask was charged with RBCB 1 (0.2 mmol, 1 equiv), [{Rh(OH)(cod)}2] (0.005 mmol, 2.5 mol%), and PPh3 (0.01 mmol, 5 mol%), and then subjected to three cycles of evacuation and flushing with N2. Freshly distilled anhyd toluene (2 mL) and ethyl acrylate (0.4 mmol, 2 equiv) were added to the mixture by syringe. The resulting mixture was stirred at rt until the starting material was consumed (TLC). After removal of the solvent, the residue was purified by flash column chromatography (silica gel, EtOAc–PE) to give a yellow solid; yield: 47.8 mg (88%); mp 55–57 °C. FTIR (KBr): 3029, 2933, 2866, 1712, 1681, 1599 cm–1. 1H NMR (400 MHz, CDCl3): δ = 7.78 (d, J = 15.6 Hz, 1 H), 7.56 (dd, J = 7.6, 0.8 Hz, 1 H), 7.38 (ddd, J = 7.6, 7.6, 1.2 Hz, 1 H), 7.29 (d, J = 7.6 Hz, 1 H), 7.20 (dd, J = 7.6, 0.8 Hz, 1 H), 6.31 (d, J = 15.6 Hz, 1 H), 4.25 (q, J = 7.2 Hz, 2 H), 3.93 (dd, J = 12.8, 5.6 Hz, 1 H), 2.62–2.48 (m, 2 H), 2.31–2.16 (m, 2 H), 2.10–1.98 (m, 2 H), 1.94–1.79 (m, 2 H), 1.33 (t, J = 7.2 Hz, 3 H). 13C NMR (100 MHz, CDCl3): δ = 209.0, 166.4, 141.7, 137.9, 133.2, 129.4, 128.4, 126.8, 126.5, 120.0, 60.1, 53.2, 41.9, 34.4, 27.0, 25.2, 13.8. ESI: m/z = 295.1 [M + Na]+. HRMS [ESI]; m/z [M + Na]+ calcd for C17H20NaO3: 295.1310; found: 295.1320.
- 11a Wessels P. Göhrt A. Zeeck A. Drautz H. Zähner HJ. J. Antibiot. 1991; 44: 1013
- 11b Onofrey TJ. Gomez D. Winters M. Moore HW. J. Org. Chem. 1997; 62: 5658
- 11c Kogan NM. Rabinowitz R. Levi P. Gibson D. Sandor P. Schlesinger M. Mechoulam R. J. Med. Chem. 2004; 47: 3800
- 12a Suzuki S. Hosoe T. Nozawa K. Yaguchi T. Udagawa S. Kawai K.-i. J. Nat. Prod. 1999; 62: 1328
- 12b Kuo Y.-H. Chen C.-H. Tetrahedron Lett. 2001; 42: 2985
- 12c Wu C.-C. Peng C.-F. Tsai I.-L. Abd El-Razek MH. Huang H.-S. Chen I.-S. Phytochemistry 2007; 68: 1338
- 12d Kouam SF. Yapna DB. Krohn K. Ngadjui BT. Ngoupayo J. Choudhary MI. Schulz B. J. Nat. Prod. 2007; 70: 600
- 12e Geng W.-L. Wang X.-Y. Kurtán T. Mándi A. Tang H. Schulz B. Sun P. Zhang W. J. Nat. Prod. 2012; 75: 1828
For selected reviews on C–C activation, see:
For selected reviews, see:
For transition-metal-catalyzed examples, see:
For radical-mediated examples, see: