Synlett 2017; 28(16): 2066-2092
DOI: 10.1055/s-0036-1590854
account
© Georg Thieme Verlag Stuttgart · New York

Chemistry 2.0: Developing a New, Solvent-Free System of Chemical Synthesis Based on Mechanochemistry

Jean-Louis Do
Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montréal, Québec, H3A 0B8, Canada   Email: tomislav.friscic@mcgill.ca
,
Tomislav Friščić*
Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montréal, Québec, H3A 0B8, Canada   Email: tomislav.friscic@mcgill.ca
› Author Affiliations
We acknowledge the financial support of the NSERC Discovery Grant (grant no. NSERC RGPIN-2017-06467), the NSERC E. W. R. Steacie ­Memorial Fellowship (T.F.) and the McGill University W. J. Dawson Scholar­ship (T.F.)
Further Information

Publication History

Received: 15 May 2017

Accepted after revision: 03 July 2017

Publication Date:
17 August 2017 (online)


Abstract

Mechanochemistry by grinding or milling has grown from a laboratory curiosity to a versatile approach for the synthesis and discovery of molecules, materials and reactivity. Focusing on organic synthesis and the chemistry of organic solids in general, we now provide a snapshot of this exciting, rapidly developing area, with the intention to illustrate its potential in establishing a more efficient and environmentally friendly system of chemical and materials synthesis, based on solid-state transformations rather than conventional, solution-dependent chemistry.

1 What is Chemistry 2.0?

2 Introduction

2.1 Why Mechanochemistry Now?

2.2 What’s in a Mechanochemistry Laboratory?

3 Liquid-Assisted Grinding (LAG): Controlling Mechanochemistry

4 The Solvent-Free Research Laboratory

5 Medicinal Mechanochemistry

6 Exploring Molecular Recognition

7 Some Myths to Dispel

8 Catalytic Reactions by Mechanochemistry

8.1 Catalysis and Reactivity Involving Bulk Metals

8.2 Enzyme Catalysis in Mechanochemistry

8.3 Coupling of Mechanochemistry, Photochemistry and Supramolecular Catalysis

9 Organometallic Mechanochemistry

10 New Opportunities

10.1 Stoichiometric Control

10.2 ‘Impossible’ Molecules

10.3 Reaction Discovery by Mechanochemistry

11 Energetics of Mechanochemistry

12 Mechanistic Understanding

13 Real-Time Reaction Monitoring

14 Conclusions

 
  • References

  • 2 Rogers RD. Seddon KR. Science 2003; 302: 792
  • 3 Li C.-J. Chen L. Chem. Soc. Rev. 2006; 35: 68
  • 4 Anastas P. Kirchhoff MM. Acc. Chem. Res. 2002; 35: 686
    • 5a McCarthy CL. Brutchey RL. Chem. Commun. 2017; 53: 4888
    • 5b Chen J. Spear SK. Huddleston JG. Rogers RD. Green Chem. 2005; 7: 64
  • 6 James SL. Adams CJ. Bolm C. Braga D. Collier P. Friščić T. Grepioni F. Harris KD. M. Hyett G. Jones W. Krebs A. Mack J. Maini L. Orpen AG. Parkin IP. Shearouse WC. Steed JW. Waddell DC. Chem. Soc. Rev. 2012; 41: 413

    • This article focuses on mechanochemical reactions conducted by grinding and milling. For other types of mechanochemistry, e.g., cleavage of polymers by sonication or atomic force spectroscopy, see:
    • 7a Li J. Nagamani C. Moore JS. Acc. Chem. Res. 2015; 48: 2181
    • 7b Beyer MK. Clausen-Schaumann H. Chem. Rev. 2005; 105: 2921
  • 8 Takacs L. Chem. Soc. Rev. 2013; 42: 7649
  • 9 Ostwald W. In The Fundamental Principles of Chemistry: An Introduction to All Text-Books of Chemistry. Longmans, Green and Co; New York: 1917
    • 10a Wang G.-W. Chem. Soc. Rev. 2013; 42: 7668
    • 10b Stolle A. Szuppa T. Leonhardt SE. S. Ondruschka B. Chem. Soc. Rev. 2011; 40: 2317
    • 10c Rodríguez B. Bruckmann A. Rantanen T. Bolm C. Adv. Synth. Catal. 2007; 349: 2213
    • 10d Stolle A. Ondruschka B. Pure Appl. Chem. 2011; 83: 1343
  • 11 Šepelák V. Düvel A. Wilkening M. Becker K.-D. Heitjans P. Chem. Soc. Rev. 2013; 42: 7507
  • 12 Rightmire NR. Hanusa TP. Dalton Trans. 2016; 45: 2352
  • 13 Friščić T. Chem. Soc. Rev. 2012; 41: 3493
    • 14a Mottillo C. Friščić T. Molecules 2017; 22: 144
    • 14b Lazuen Garay A. Pichon A. James SL. Chem. Soc. Rev. 2007; 36: 846
  • 15 Užarević K. Halasz I. Friščić T. J. Phys. Chem. Lett. 2015; 6: 4129
    • 17a Takacs L. Chem. Soc. Rev. 2013; 42: 7649
    • 17b Friščić T. James SL. Boldyreva EV. Bolm C. Jones W. Mack J. Steed JW. Suslick KS. Chem. Commun. 2015; 51: 6248
    • 18a Margetić D. Štrukil V. Mechanochemical Organic Synthesis . Elsevier; Amsterdam: 2016
    • 18b Bruckmann A. Pure Appl. Chem. 2011; 83: 1343
    • 19a James SL. Friščić T. Chem. Commun. 2013; 49: 5349
    • 19b James SL. Friščić T. Chem. Soc. Rev. 2013; 42: 7494
    • 19c James S. Nangia A. CrystEngComm 2009; 11: 387
    • 21a Watson WJ. W. Green Chem. 2012; 14: 251
    • 21b Rantanen J. Khinast J. J. Pharm. Sci. 2015; 104: 3612
    • 21c Jiménez-González C. Constable DJ. C. Ponder CS. Chem. Soc. Rev. 2012; 41: 1485
    • 21d Constable DJ. C. Curzons AD. Freitas dos Santos LM. Geen GR. Hannah RE. Hayler JD. Kitteringham J. McGuire MA. Richardson JE. Smith P. Webb RL. Yu M. Green Chem. 2001; 3: 7
    • 21e Dunn PJ. Chem. Soc. Rev. 2012; 41: 1452
    • 21f Czaja A. Leung E. Trukhan N. Müller U. Industrial MOF Synthesis . In Metal-Organic Frameworks: Applications from Catalysis to Gas Storage . Farrusseng D. Wiley-VCH; Weinheim: 2011
    • 21g Yilmaz B. Trukhan N. Müller U. Chin. J. Catal. 2012; 33: 3
    • 21h Friščić T. Julien P. Mottillo C. Environmentally-Friendly Designs and Syntheses of Metal-Organic Frameworks (MOFs) . In Green Technologies for the Environment . Obare SO. Luque R. ACS Symposium Series 1186; Washington: 2014
  • 22 Delori A. Friščić T. Jones W. CrystEngComm 2012; 14: 2350
    • 23a Adams CJ. Kurawa MA. Orpen AG. Inorg. Chem. 2010; 49: 10475
    • 23b Yang H. Orefuwa S. Goudy A. Micropor. Mesopor. Mater. 2011; 143: 37
  • 24 Baláž P. Achimovičová M. Baláž M. Billik P. Cherkezova-Zheleva Z. Criado JM. Delogu F. Dutková E. Gaffet E. Gotor FJ. Kumar R. Mitov I. Rojac T. Senna M. Streletskii A. Wieczorek-Ciurowa K. Chem. Soc. Rev. 2013; 42: 7571

    • For examples, see:
    • 25a Watts AE. Maruyoshi K. Hughes CE. Brown SP. Harris KD. M. Cryst. Growth Des. 2016; 16: 1798
    • 25b Chernyshev VV. Yatsenko AV. Pirogov SV. Nikulenkova TF. Tumanova EV. Lonin IS. Paseshnichenko KA. Mironov AV. Velikodny YA. Cryst. Growth Des. 2012; 12: 6118
    • 25c Shivakumar KI. Yan Y. Hughes CE. Apperley DC. Harris KD. M. Sanjayan GJ. Cryst. Growth Des. 2015; 15: 1583

      For examples, see:
    • 26a Schurko RW. Acc. Chem. Res. 2013; 46: 1985
    • 26b Salager E. Day GM. Stein RS. Pickard CJ. Elena B. Emsley L. J. Am. Chem. Soc. 2010; 132: 2564
    • 26c Veinberg SL. Johnston KE. Jaroszewicz MJ. Kispal BM. Mireault CR. Kobayashi T. Pruski M. Schurko RW. Phys. Chem. Chem. Phys. 2016; 18: 17713
  • 27 Baias M. Dumez J.-N. Svensson PH. Schantz S. Day GM. Emsley L. J. Am. Chem. Soc. 2013; 135: 17501
    • 28a Cruz-Cabeza A. Karki S. Fábián L. Friščić T. Day GM. Jones W. Chem. Commun. 2010; 46: 2224
    • 28b Bygrave PJ. Case DH. Day GM. Faraday Discuss. 2014; 170: 41
  • 29 Reilly AM. Cooper RI. Adijman CS. Bhattacharya S. Boese AD. Brandenburg JG. Bygrave PJ. Bylsma R. Campbell JE. Car R. Case DH. Chadha R. Cole JC. Cosburn K. Cuppen HM. Curtis F. Day GM. DiStasio RA. Jr. Dzybachenko A. van Eijck BP. Elking DM. van den Ende JA. Facelli JC. Ferraro MB. Fusti-Molnar L. Gatsiou C.-A. Gee TS. de Gelder R. Ghiringhelli LM. Goto H. Grimme S. Guo R. Hofmann DW. M. Hoja J. Hylton RK. Iuzzolino L. Jankiewicz W. de Jong DT. Kendrick J. de Klerk NJ. J. Ko H.-Y. Kuleshova LN. Li X. Lohani S. Leusen FJ. J. Lund AM. Lv J. Ma Y. Marom N. Masunov AE. McCabe P. McMahon DP. Meekes H. Metz MP. Misquitta AJ. Mohamed S. Monserrat B. Needs RJ. Neumann MA. Nyman J. Obata S. Oberhofer H. Oganov AR. Orendt AM. Pagola GI. Pantelides CC. Pickard CJ. Podeszwa R. Price LS. Price SL. Pulido A. Read MG. Reuter K. Schneider E. Schober C. Shields GP. Singh P. Sugden IJ. Szalewicz K. Taylor CR. Tkatchenko A. Tuckermann ME. Vacarro F. Vasileiadis M. Vazquez-Mayagoitia A. Vogt L. Wang Y. Watson RE. de Wijs GA. Yang J. Zhu Q. Groom CR. Acta Cryst., Sect. B 2016; 72: 439
    • 30a Friščić T. Jones W. Cryst. Growth. Des. 2009; 9: 1621
    • 30b Bowmaker GA. Chem. Commun. 2013; 49: 334
  • 31 Braga D. Giaffreda SL. Grepioni F. Pettersen A. Mani L. Curzi M. Polito M. Dalton Trans. 2006; 1249
    • 32a Friščić T. J. Mater. Chem. 2010; 20: 7599
    • 32b Friščić T. Reid DG. Halasz I. Stein RS. Dinnebier RE. Duer MJ. Angew. Chem. Int. Ed. 2010; 49: 712
  • 33 Hasa D. Schneider Rauber G. Voinovich D. Jones W. Angew. Chem. Int. Ed. 2015; 54: 7371
  • 34 Cinčić D. Brekalo I. Kaitner B. Cryst. Growth Des. 2012; 12: 44
  • 35 Štrukil V. Fábián L. Reid DG. Duer MJ. Jackson GJ. Eckert-Maksić M. Friščić T. Chem. Commun. 2010; 46: 9191
    • 36a Bonnamour J. Métro T.-X. Martinez J. Lamaty F. Green Chem. 2013; 15: 1116
    • 36b Konnert L. Reneaud B. de Figueiredo RM. Campagne J.-M. Lamaty F. Martinez J. Colacino E. J. Org. Chem. 2014; 79: 10132
    • 36c Konnert L. Dimassi M. Gonnet L. Lamaty F. Martinez J. Colacino E. RSC Adv. 2016; 6: 36978
    • 37a Eguaogie O. Cooke LA. Martin PM. L. Ravalico F. Conway LP. Hodgson DR. W. Law CJ. Vyle JS. Org. Biomol. Chem. 2016; 14: 1201
    • 37b Ravalico F. Messina I. Berberian MV. James SL. Migaud ME. Vyle JS. Org. Biomol. Chem. 2011; 9: 6496
    • 37c Cummings AJ. Ravalico F. McColgan-Bannon KI. S. Eguaogie O. Elliott PA. Shannon MR. Bermejo IA. Dwyer A. Maginty AB. Mack J. Vyle JS. Nucleosides, Nucleotides Nucleic Acids 2015; 34: 361
  • 38 Tan D. Loots L. Friščić T. Chem. Commun. 2016; 52: 7760
  • 39 Štrukil V. Margetić D. Igrc MD. Eckert-Maksić M. Friščić T. Chem. Commun. 2012; 48: 9705
  • 40 Shi YX. Xu K. Clegg JK. Ganguly R. Hirao H. Friščić T. Garcia F. Angew. Chem. Int. Ed. 2016; 55: 12736
  • 41 Katsenis AD. Puškarić A. Štrukil V. Mottillo C. Julien PA. Užarević K. Pham M.-H. Do T.-O. Kimber SA. J. Lazić P. Magdysyuk O. Dinnebier RE. Halasz I. Friščić T. Nat. Commun. 2015; 6: 6662
  • 42 Wang GW. Komatsu K. Murata Y. Shiro M. Nature 1997; 387: 583
  • 43 Tan D. Mottillo C. Katsenis AD. Štrukil V. Friščić T. Angew. Chem. Int. Ed. 2014; 53: 9321
  • 44 Zhu S.-E. Li F. Wang G.-W. Chem. Soc. Rev. 2013; 42: 7535
  • 45 Halasz I. Kimber SA. J. Beldon PJ. Belenguer AM. Adams F. Honkimäki V. Nightingale RC. Dinnebier RE. Friščić T. Nat. Prot. 2013; 8: 1718
  • 46 Stolle A. Technical Implications of Organic Synthesis in Ball Mills. In Ball Milling Towards Green Synthesis: Applications Projects Challenges. Stolle A. Ranu BC. Royal Society of Chemistry; Cambridge: 2014
  • 47 Cinčić D. Brekalo I. Kaitner B. Chem. Commun. 2012; 48: 11683
    • 48a Burmeister CF. Kwade A. Chem. Soc. Rev. 2013; 42: 7660
    • 48b Stolle A. Schmidt R. Jacob K. Faraday Discuss. 2014; 170: 267
  • 49 Baláž P. Mechanochemistry in Nanoscience and Minerals Engineering. Springer-Verlag; Berlin: 2008
  • 50 Fang Y. Salamé N. Woo S. Bohle DS. Friščić T. Cuccia LA. CrystEngComm 2014; 16: 7180
    • 51a Michalchuk AA. L. Tumanov IA. Drebushchak VA. Boldyreva EV. Faraday Discuss. 2014; 170: 311
    • 51b Michalchuk AA. L. Tumanov IA. Boldyreva EV. CrystEngComm 2013; 15: 6403
    • 52a Blair RG. Chagoya K. Biltek S. Jackson S. Sinclair A. Taraboletti A. Restrepo DT. Faraday Discuss. 2014; 170: 223
    • 52b Nash DJ. Restrepo DT. Parra NS. Giesler KE. Penabade RA. Aminpour M. Le D. Li Z. Farha OK. Harper JK. Rahman TS. Blair RG. ACS Omega 2016; 1: 1343
  • 53 Gracin D. Štrukil V. Friščić T. Halasz I. Užarević K. Angew. Chem. Int. Ed. 2014; 53: 6193
  • 54 Batzdorf L. Fischer F. Wilke M. Wenzel K.-J. Emmerling F. Angew. Chem. Int. Ed. 2015; 54: 1799
    • 55a Štefanić G. Krehula S. Štefanić I. Dalton Trans. 2015; 44: 18870
    • 55b Štefanić G. Krehula S. Štefanić I. Chem. Commun. 2013; 49: 9245
  • 56 Nicolaou KC. Vourloumis D. Winssinger N. Baran PS. Angew. Chem. Int. Ed. 2000; 39: 44
  • 57 Friščić T. Drab DM. MacGillivray LR. Org. Lett. 2004; 6: 4647
  • 58 Shan N. Toda F. Jones W. Chem. Commun. 2002; 2372
  • 59 Friščić T. Childs SL. Rizvi SA. A. Jones W. CrystEngComm 2009; 11: 418
  • 60 Friščić T. Trask AV. Jones W. Motherwell WD. S. Angew. Chem. Int. Ed. 2006; 45: 7546
    • 61a Aakeröy CB. Desper J. Smith MM. Chem. Commun. 2007; 3936
    • 61b Bhogala BR. Nangia A. New J. Chem. 2008; 32: 800
    • 61c Mir NA. Dubey R. Desiraju GR. IUCrJ 2016; 3: 96
    • 62a Trask AV. Motherwell WD. S. Jones W. Cryst. Growth Des. 2005; 5: 1013
    • 62b Bučar DK. Henry RF. Lou X. Borchardt TB. Zhang GG. Z. Chem. Commun. 2007; 525
    • 62c Friščić T. Reid DG. Day GM. Duer MJ. Jones W. Cryst. Growth Des. 2011; 11: 972
  • 63 Cheung EY. Kitchin SJ. Harris KD. M. Imai Y. Tajima N. Kuroda R. J. Am. Chem. Soc. 2003; 125: 14658
  • 64 Friščić T. Meštrović E. Škalec Šamec D. Kaitner B. Fábián L. Chem. Eur. J. 2009; 15: 12644
    • 65a Braga D. Maini L. Grepioni F. Chem. Soc. Rev. 2013; 42: 7638
    • 65b Fucke K. Myz SA. Shakhtshneider TP. Boldyreva EV. Griesser UJ. New J. Chem. 2012; 36: 1969
    • 65c Weyna DR. Shattock T. Vishweshwar P. Zaworotko MJ. Cryst. Growth Des. 2009; 9: 1106
    • 66a André V. Duarte MT. Braga D. Grepioni F. Cryst. Growth Des. 2012; 12: 3082
    • 66b Marivel S. Braga D. Grepioni F. Lampronti GI. CrystEngComm 2010; 12: 2107
    • 66c Trask AV. Haynes DA. Motherwell WD. S. Jones W. Chem. Commun. 2006; 51
  • 67 Stilinović V. Cinčić D. Zbačnik M. Kaitner B. Croat. Chem. Acta. 2012; 85: 485
  • 68 Trask AV. Shan N. Motherwell WD. S. Jones W. Feng S. Tan RB. H. Carpenter KJ. Chem. Commun. 2005; 880
  • 69 Hardacre C. Huang H. James SL. Migaud ME. Norman SE. Pitner WR. Chem. Commun. 2011; 47: 5846
  • 70 Hernández JG. Macdonald NA. J. Mottillo C. Butler IS. Friščić T. Green Chem. 2014; 16: 1087
  • 71 Trask AV. van de Streek J. Motherwell WD. S. Jones W. Cryst. Growth Des. 2005; 5: 2233
  • 72 Trask AV. Motherwell WD. S. Jones W. Chem. Commun. 2004; 890
  • 73 Friščić T. Trask AV. Motherwell WD. S. Jones W. Cryst. Growth Des. 2008; 8: 1605
  • 74 Fischer F. Scholz G. Benemann S. Rademann K. Emmerling F. CrystEngComm 2014; 16: 8272
  • 75 Hasa D. Miniussi E. Jones W. Cryst. Growth Des. 2016; 16: 4582
  • 76 Tireli M. Juribašić Kulcsár M. Cindro N. Gracin D. Biliškov N. Borovina M. Ćurić M. Halasz I. Užarević K. Chem. Commun. 2015; 51: 8058
  • 77 Gutmann V. Coord. Chem. Rev. 1976; 18: 225
  • 78 Štrukil V. Igrc MD. Fábián L. Eckert-Maksić M. Childs SL. Reid DG. Duer MJ. Mottillo C. Friščić T. Green Chem. 2012; 14: 2462
  • 79 Štrukil V. Igrc MD. Eckert-Maksić M. Friščić T. Chem. Eur. J. 2012; 18: 8464
  • 80 Wernerova M. Hudlicky T. Synlett 2010; 2701
    • 81a Karki S. Fábián L. Friščić T. Jones W. Org Lett. 2007; 9: 3133
    • 81b Atkinson MB. J. Halasz I. Bučar D.-K. Dinnebier RE. Mariappan SV. S. Sokolov AN. MacGillivray LR. Chem. Commun. 2011; 47: 236
    • 82a Friščić T. Fábián L. CrystEngComm 2009; 11: 743
    • 82b Yuan W. Friščić T. Apperley D. James SL. Angew. Chem. Int. Ed. 2010; 49: 3916
  • 83 Fujii K. Lazuen Garay A. Hill J. Sbircea E. Pan Z. Xu M. Apperley DC. James SL. Harris KD. M. Chem. Commun. 2010; 46: 7572
  • 84 Huskić I. Halasz I. Friščić T. Vančik H. Green Chem. 2012; 14: 1597
  • 85 Shy H. Mackin P. Orvieto AS. Gharbharan D. Peterson GR. Bampos N. Hamilton TD. Faraday Discuss. 2014; 170: 59
  • 86 Tan D. Štrukil V. Mottillo C. Friščić T. Chem. Commun. 2014; 50: 5248
  • 87 Cervello J. Sastre T. Synthesis 1990; 221
  • 88 Tan D. Friščić T. Chem. Commun. 2017; 53: 901
  • 89 Friščić T. Lancaster RW. Fábián L. Karamertzanis P. Proc. Natl. Acad. Sci. U.S.A. 2010; 107: 13216
  • 90 Baker ME. Endocr. Disruptors 2014; 2: e967138
  • 91 Ardila-Fierro KJ. André V. Tan D. Duarte MT. Lancaster RW. Karamertzanis PG. Friščić T. Cryst. Growth Des. 2015; 15: 1492
    • 92a Lapadula G. Judaš N. Friščić T. Jones W. Chem. Eur. J. 2010; 16: 7400
    • 92b Cinčić D. Friščić T. CrystEngComm 2014; 16: 10169
  • 93 Ferguson M. Giri N. Xu H. Apperley D. James SL. Green Chem. 2014; 16: 1374
  • 94 Chow EH. H. Strobridge FC. Friščić T. Chem. Commun. 2010; 46: 6368
  • 95 Užarević K. Štrukil V. Mottillo C. Julien PA. Puškarić A. Friščić T. Halasz I. Cryst. Growth Des. 2016; 16: 2342
  • 96 Schmidt R. Burmeister CF. Baláž M. Kwade A. Stolle A. Org. Process Res. Dev. 2015; 19: 427
    • 97a Urakaev FK. Boldyrev VV. Powder Tech. 2000; 107: 93
    • 97b Urakaev FK. Boldyrev VV. Powder Tech. 2000; 107: 197
  • 98 McKissic KS. Caruso JT. Blair RG. Mack J. Green Chem. 2014; 16: 1628
  • 99 You S. Chen M.-W. Dlott DD. Suslick KS. Nat. Commun. 2015; 6: 6581
  • 100 Rothenberg G. Downie AP. Raston CL. Scott JL. J. Am. Chem. Soc. 2001; 123: 8701
  • 101 Chadwick K. Davey R. Cross W. CrystEngComm 2007; 9: 732
  • 102 Dolotko O. Wiench JW. Dennis KW. Pecharsky VK. Balema VP. New J. Chem. 2010; 34: 25
  • 103 Jayasankar A. Somwangthanaroj A. Shao ZJ. Rodríguez-Hornedo N. Pharm. Res. 2006; 23: 2381
  • 104 Munyaneza A. Adeyemi OG. Coville NJ. Bull. Chem. Soc. Ethiop. 2009; 23: 399
  • 105 Munyaneza A. Bala MD. Coville NJ. S. Afr. J. Chem. 2009; 62: 14
    • 106a Hernández JG. Juaristi E. Chem. Commun. 2012; 48: 5396
    • 106b Bruckmann A. Krebs A. Bolm C. Green Chem. 2008; 10: 1131
    • 106c Jörres M. Mersmann S. Raabe G. Bolm C. Green Chem. 2013; 15: 612
    • 106d Hernández JG. Juaristi E. J. Org. Chem. 2011; 76: 1464
    • 107a Stolle A. Ondruschka B. Anke K. Bolm C. Innovative Catalysis in Organic Synthesis: Oxidation Hydrogenation and C-X Bond Forming Reactions . Andersson PG. Wiley-VCH; Weinheim: 2012
    • 107b Hernández JG. Friščić T. Tetrahedron Lett. 2015; 56: 4253
    • 108a Braga D. D’Addario D. Polito M. Organometallics 2004; 23: 2810
    • 108b Cravotto G. Garella D. Tagliapietra S. Stolle A. Schüßler S. Leonhartdt S. Ondruschka B. New J. Chem. 2012; 36: 1304
    • 108c Lou S.-L. Mao Y.-J. Xu D.-Q. He J.-Q. Chen Q. Xu Z.-Y. ACS Catal. 2016; 6: 3890
    • 108d Tullberg E. Peters D. Fredj T. J. Organomet. Chem. 2004; 689: 3778
    • 108e Declerck V. Colacino E. Bantreil X. Martinez J. Lamaty F. Chem. Commun. 2012; 48: 11778
    • 109a Tan Y.-J. Zhang Z. Wang F.-J. Wu H.-H. Li Q.-H. RSC Adv. 2014; 397: 18
    • 109b Schmidt R. Thorwirth R. Szuppa T. Stolle A. Ondruschka B. Hopf H. Chem. Eur. J. 2011; 17: 8129
    • 110a Nielsen SF. Peters D. Axelsson O. Synth. Commun. 2000; 30: 3501
    • 110b Chen L. Lemma BE. Rich JS. Mack J. Green Chem. 2014; 16: 1101
    • 111a Schneider F. Ondruschka B. ChemSusChem 2008; 1: 622
    • 111b Schneider F. Szuppa T. Stolle A. Ondruschka B. Hopf H. Green Chem. 2009; 11: 1894
    • 111c Schneider F. Stolle A. Ondruschka B. Hopf H. Org. Process Res. Dev. 2009; 13: 44
    • 111d Bernhardt F. Trotzki R. Szuppa T. Stolle A. Ondruschka B. Beilstein J. Org. Chem. 2010; 6: No. 7
  • 112 Thorwirth R. Stolle A. Ondruschka B. Wild A. Schubert US. Green Chem. 2011; 47: 4370
  • 113 Juribašić M. Užarević K. Gracin D. Ćurić M. Chem. Commun. 2014; 50: 10287
    • 114a Hermann GN. Becker P. Bolm C. Angew. Chem. Int. Ed. 2015; 54: 7414
    • 114b Hernández JG. Bolm C. Chem. Commun. 2015; 51: 12582
    • 114c Hermann GN. Becker P. Bolm C. Angew. Chem. Int. Ed. 2016; 55: 3781
  • 115 Makhaev VD. Borisov AP. Petrova LA. J. Organomet. Chem. 1999; 590: 222
  • 116 Li L. Wang J.-J. Wang G.-W. J. Org. Chem. 2016; 81: 5433
  • 117 Lou S.-J. Mao Y.-J. Xu D.-Q. He J.-Q. Chen Q. Xu Z.-Y. ACS Catal. 2016; 6: 3890
    • 118a Chen F. Wang T. Jiao N. Chem. Rev. 2014; 114: 8613
    • 118b Deraedt C. d’Halluin M. Astruc D. Eur. J. Inorg. Chem. 2013; 28: 4881
    • 118c Hoveyda AH. Zhugralin AR. Nature 2007; 450: 243
    • 118d Kotha S. Dipak MK. Tetrahedron 2012; 68: 397
    • 118e Schrock RR. Acc. Chem. Res. 2014; 47: 2457
    • 118f Kress S. Blechert S. Chem. Soc. Rev. 2012; 41: 4389
    • 118g Hoveyda AH. J. Org. Chem. 2014; 79: 4763
    • 118h Fustero S. Simόn-Fuentes A. Barrio P. Haufe G. Chem. Rev. 2015; 115: 871
    • 118i Burtscher D. Grela K. Angew. Chem. Int. Ed. 2009; 48: 442
    • 119a Watson MD. Wagener KB. Macromolecules 2000; 33: 1494
    • 119b Oakley GW. Wagener KB. Macromol. Chem. Phys. 2005; 206: 15
  • 120 Do J.-L. Mottillo C. Tan D. Štrukil V. Friščić T. J. Am. Chem. Soc. 2015; 137: 2476
  • 121 Deutschmann O. Knözinger H. Kochloefl K. Turek T. Heterogeneous Catalysis and Solid Catalysts . In Ullmann’s Encyclopedia of Industrial Chemistry . Wiley-VCH; Weinheim: 2009
    • 122a Astruc D. Transition-Metal Nanoparticles in Catalysis: From Historical Background to the State-of-the Art. Astruc D. Wiley-VCH; Weinheim: 2008
    • 122b Pérez-Lorenzo M. J. Phys. Chem. Lett. 2012; 3: 167
    • 122c Pan H.-B. Wai CM. J. Phys. Chem. C 2010; 114: 11364
    • 122d Iqbal S. Kondrat SA. Jones DR. Schoenmakers DC. Edwards JK. Lu L. Yeo BR. Wells PP. Gibson EK. Morgan DJ. Kiely CJ. Hutchings GJ. ACS Catal. 2015; 5: 5047
  • 123 Fulmer DA. Shearouse WC. Medonza ST. Mack J. Green Chem. 2009; 11: 1821
  • 124 Cook TL. Walker JA. Jr. Mack J. Green Chem. 2013; 15: 617
  • 125 Chen L. Bovee MO. Lemma BE. Keithley KS. M. Pilson SL. Coleman MG. Mack J. Angew. Chem. Int. Ed. 2015; 54: 11084
  • 126 Haley RA. Zellner AR. Krause JA. Guan H. Mack J. ACS Sustainable Chem. Eng. 2016; 4: 2464
    • 127a Straub BF. Gollub C. Chem. Eur. J. 2004; 10: 3081
    • 127b Wang C. Xi Z. Chem. Commun. 2007; 48: 5119
  • 128 Glavinović M. Qi F. Katsenis AD. Friščić T. Lumb J.-P. Chem. Sci. 2016; 7: 707
  • 129 Glavinović M. Krause M. Yang L. McLeod JA. Liu L. Baines KM. Friščić T. Lumb J.-P. Sci. Adv. 2017; 3: e1700149
  • 130 Beillard A. Métro T.-X. Bantreil X. Martinez J. Lamaty F. Chem. Sci. 2017; 8: 1086
  • 131 Hernández JG. Frings M. Bolm C. ChemCatChem 2016; 8: 1769
  • 132 Immohr S. Felderhoff M. Schüth F. Angew. Chem. Int. Ed. 2013; 52: 12688
  • 133 Sokolov AN. Bučar D.-K. Baltrusaitis J. Gu SX. MacGillivray LR. Angew. Chem. Int. Ed. 2010; 49: 4273
  • 134 MacGillivray LR. Papaefstathiou GS. Friščić T. Hamilton TD. Bučar D.-K. Chu Q. Varshney DB. Georgiev IG. Acc. Chem. Res. 2008; 41: 280
  • 135 Papaefstathiou GS. MacGillivray LR. Org. Lett. 2001; 3: 3835
  • 136 Friščić T. MacGillivray LR. Z. Krist. 2005; 220: 351
  • 137 Stojaković J. Farris BS. MacGillivray LR. Chem. Commun. 2012; 48: 7958
  • 138 Stojaković J. Farris BS. MacGillivray LR. Faraday Discuss. 2014; 170: 35
  • 139 Friščić T. MacGillivray LR. Chem. Commun. 2003; 1306
  • 140 Atkinson MB. J. Bučar D.-K. Sokolov AN. Friščić T. Robinson CN. Bilal MY. Sinada NG. Chevannes A. MacGillivray LR. Chem. Commun. 2008; 5713
    • 141a Papefstathiou GS. Kipp AJ. MacGillivray LR. Chem. Commun. 2001; 2462
    • 141b MacGillivray LR. Reid JL. Ripmeester JA. Papaefstathiou GS. Ind. Eng. Chem. Res. 2002; 41: 4494
    • 142a Coville NJ. Cheng L. J. Organomet. Chem. 1998; 571: 149
    • 142b Eke UB. Coville NJ. Inorg. Chem. Commun. 2000; 3: 368
    • 142c Adeyemi OG. Coville NJ. Organometallics 2003; 22: 2284
    • 142d Bala MD. Coville NJ. J. Organomet. Chem. 2007; 692: 709
    • 143a Braga D. Grepioni F. Chem. Commun. 2005; 29: 3635
    • 143b Braga D. Giaffreda SL. Grepioni F. Pettersen A. Maini L. Curzi M. Polito M. Dalton Trans. 2006; 10: 1249
    • 143c Braga D. Giaffreda SL. Grepioni F. Chierotti MR. Gobetto R. Palladino G. Polito M. CrystEngComm 2007; 9: 879
  • 144 Hernández JG. Macdonald NA. J. Mottillo C. Butler IS. Friščić T. Chem. Sci. 2014; 5: 3576
  • 145 Schmidt R. Stolle A. Ondruschka B. Green Chem. 2012; 14: 1673
  • 146 Wang G.-W. Gao J. Green Chem. 2012; 14: 1125
  • 147 Rightmire NR. Hanusa TP. Rheingold AL. Organometallics 2014; 33: 5952
  • 148 Rightmire NR. Bruns DL. Hanusa TP. Brennessel WW. Organometallics 2016; 35: 1698
  • 149 Karki S. Friščić T. Jones W. CrystEngComm 2009; 11: 470
  • 150 Cinčić D. Friščić T. Jones W. J. Am. Chem. Soc. 2008; 130: 7524
    • 151a Bowmaker GA. Chaichit N. Pakawatchai C. Skelton BW. White AH. Dalton Trans. 2008; 2926
    • 151b Bowmaker GA. Chem. Commun. 2013; 49: 334
    • 151c Bowmaker GA. di Nicola C. Pettinari C. Skelton BW. Somers N. White AH. Dalton Trans. 2011; 40: 5102
  • 152 Mavračić J. Cinčić D. Kaitner B. CrystEngComm 2016; 18: 3343
    • 153a Štrukil V. Gracin D. Magdysyuk OV. Dinnebier RE. Friščić T. Angew. Chem. Int. Ed. 2015; 54: 8440
    • 153b Ðud M. Magdysyuk OV. Margetić D. Štrukil V. Green Chem. 2016; 18: 2666
  • 154 Larsen C. Steliou K. Harpp DN. J. Org. Chem. 1978; 43: 337
    • 155a Katritzky AR. Witek RM. Rodriguez-Garcia V. Mohapatra PP. Rogers JW. Cusido J. Abdel-Fattah AA. A. Steel PJ. J. Org. Chem. 2005; 70: 7866
    • 155b Katritzky AR. Ledoux S. Witek RM. Nair SK. J. Org Chem. 2004; 69: 2976
  • 156 Scherer OJ. Andres K. Krüger C. Tsay Y.-H. Wolmerhäser G. Angew. Chem. Int. Ed. 1980; 19: 571
  • 157 Kunitake M. Uemura S. Ito O. Fujiwara K. Murata Y. Komatsu K. Angew. Chem. Int. Ed. 2002; 41: 969
  • 158 Su Y.-T. Wang G.-W. Org. Lett. 2013; 15: 3408
  • 159 Breitung-Faes S. Kwade A. Miner. Eng. 2013; 43–44: 36
  • 160 Ibrahim AY. Forbes RT. Blagden N. CrystEngComm 2011; 13: 1141
    • 161a Cliffe MJ. Mottillo C. Stein RS. Bučar D.-K. Friščić T. Chem. Sci. 2012; 3: 2495
    • 161b Mottillo C. Lu Y. Pham M.-H. Cliffe MJ. Do T.-O. Friščić T. Green Chem. 2013; 15: 2121
  • 162 Feng X. Jia C. Wang J. Cao X. Tang P. Yuan W. Green Chem. 2015; 17: 3740
  • 163 Qi F. Stein RS. Friščić T. Green Chem. 2014; 16: 121
  • 164 Tumanov IA. Achkasov AF. Boldyreva EV. Boldyrev VV. CrystEngComm 2011; 13: 2213
  • 165 Friščić T. Halasz I. Beldon PJ. Belenguer AM. Adams F. Kimber SA. J. Honkimäki V. Dinnebier RE. Nat. Chem. 2013; 5: 66
  • 166 Halasz I. Puškarić A. Kimber SA. J. Beldon PJ. Belenguer AM. Adams F. Honkimäki V. Dinnebier RE. Patel B. Jones W. Štrukil V. Friščić T. Angew. Chem. Int. Ed. 2013; 52: 11538
  • 167 Halasz I. Friščić T. Kimber SA. J. Užarević K. Puškarić A. Mottillo C. Julien P. Štrukil V. Honkimäki V. Dinnebier RE. Faraday Discuss. 2014; 170: 203
  • 168 Ma X. Yuan W. Bell SE. J. James SL. Chem. Commun. 2014; 50: 1585
  • 169 Beldon PJ. Fábián L. Stein RS. Thirumurugan A. Cheetham AK. Friščić T. Angew. Chem. Int. Ed. 2010; 49: 9640
  • 170 Bennett TD. Cao S. Tan JC. Keen DA. Bithell EG. Beldon PJ. Friscic T. Cheetham AK. J. Am. Chem. Soc. 2011; 133: 14546
  • 171 Baxter EF. Bennett TD. Cairns AB. Brownbill NJ. Goodwin AL. Keen DA. Chater PA. Blanc F. Cheetham AK. Dalton Trans. 2016; 45: 4258
  • 172 Bennett TD. Cheetham AK. Acc. Chem. Res. 2014; 47: 1555
  • 173 Akimbekov Z. Katsenis AD. Nagabhushana GP. Ayoub G. Arhangelskis M. Morris AJ. Friščić T. Navrotsky A. J. Am. Chem. Soc. 2017; 139: 7952
  • 174 Lukin S. Stolar T. Tireli M. Blanco M. Babić D. Friščić T. Užarević K. Halasz I. Chem. Eur. J. 2017; DOI: 10.1002/chem.201702489.
  • 175 Kulla H. Wilke M. Fischer F. Röllig M. Maierhofer C. Emmerling F. Chem. Commun. 2017; 53: 1664
  • 176 Michalchuk AA. L. Tumanov IA. Konar S. Kimber SA. J. Pulham CR. Boldyreva EV. Adv. Sci. 2017; DOI: 10.1002/advs.1700132.
  • 177 Tumanov IA. Michalchuk AA. L. Politov AA. Boldyreva EV. Boldyrev VV. CrystEngComm 2017; 19: 2830
  • 178 Strobridge FC. Judaš N. Friščić T. CrystEngComm 2010; 12: 2409
  • 179 Kabbani MA. Tiwary CS. Autreto PA. S. Brunetto G. Som A. Krishnadas KR. Ozden S. Hackenberg KP. Gong Y. Galvao DS. Vajtai R. Kabbani AT. Pradeep T. Ajayan PM. Nat. Commun. 2015; 6: 7291
  • 180 Kaupp G. CrystEngComm 2009; 11: 388
    • 181a Belenguer AM. Friščić T. Day GM. Sanders JK. M. Chem. Sci. 2011; 2: 696
    • 181b Murata Y. Kato N. Fujiwara K. Komatsu K. J. Org. Chem. 1999; 64: 3483
    • 182a Içli B. Christinat N. Tönnemann J. Schüttler C. Scopelliti R. Severin K. J. Am. Chem. Soc. 2009; 131: 3154
    • 182b Pascu M. Ruggi A. Scopelliti R. Severin K. Chem. Commun. 2013; 49: 45
    • 182c Hsu C.-C. Lai C.-C. Chiu S.-H. Tetrahedron 2009; 65: 2824
  • 183 Resnati G. Boldyreva E. Bombicz P. Kawano M. IUCrJ 2015; 2: 75
  • 184 Drebushchak TN. Ogienko AA. Boldyreva EV. CrystEngComm 2011; 13: 4405
  • 185 Boldyreva E. Chem. Soc. Rev. 2013; 42: 7719
  • 186 Pulido A. Chen L. Kaczorowski T. Holden D. Little MA. Chong SY. Slater BJ. McMahon DP. Bonillo B. Stackhouse CJ. Stephenson A. Kane CM. Clowes R. Hasell T. Cooper AI. Day GM. Nature 2017; 543: 657
    • 187a Belenguer AM. Lampronti GI. Cruz-Cabeza AJ. Hunter CA. Sanders JK. M. Chem. Sci. 2016; 7: 6617
    • 187b Korpany KV. Mottillo C. Bachelder J. Cross SN. Dong P. Trudel S. Friščić T. Blum AS. Chem. Commun. 2016; 52: 3054