RSS-Feed abonnieren
DOI: 10.1055/s-0036-1590870
Recent Advances on the Application of Electrocyclic Reactions in Complex Natural Product Synthesis
We are grateful to Zhejiang Natural Science Fund for Distinguished Young Scholars (LR16B020001), the NSFC (21302204, 21472167, 21622205) and Fundamental Research Funds for the Central Universities (2017XZZX002-02) for financial support.Publikationsverlauf
Received: 14. März 2017
Accepted after revision: 08. Mai 2017
Publikationsdatum:
24. August 2017 (online)
Abstract
The electrocyclic reaction is one of the most powerful tools for the construction of complex polycyclic scaffolds in a highly stereocontrolled fashion. In this review, recent advances in its application in the total synthesis of representative natural products are discussed, with the aim of providing a complement to existing reviews.
1 Introduction
2 4π Electrocyclization
2.1 Neutral 4π Electrocyclization
2.2 Cationic 4π Electrocyclization
3 6π Electrocyclization
3.1 All-Carbon 6π Electrocyclization
3.2 Oxa-6π Electrocyclization
3.3 Aza-6π Electrocyclization
3.4 Retro-6π Electrocyclization
4 8π Electrocyclization
5 Conclusion and Outlook
-
References
- 1a Fleming I. Molecular Orbitals and Organic Chemical Reactions . John Wiley; Chichester: 2011
- 1b Hoffmann R. Angew. Chem. Int. Ed. 1982; 21: 711
- 1c Woodward RB. Hoffmann R. The Conservation of Orbital Symmetry . Verlag Chemie; Weinheim: 1970
- 1d Woodward RB. Hoffmann R. Angew. Chem., Int. Ed. Engl. 1969; 8: 781
- 1e Woodward RB. Hoffmann R. J. Am. Chem. Soc. 1965; 87: 395
- 2 Desimoni G. Tacconi G. Barco A. Pollini GP. Natural Products Synthesis Through Pericyclic Reactions . ACS Monograph 180, American Chemical Society; Washington D. C.: 1983
- 3a Desimoni G. Faita G. Guidetti S. Righetti PP. Eur. J. Org. Chem. 1999; 1921
- 3b Mayr H. Huisgen R. J. Chem. Soc., Chem. Commun. 1976; 57
- 3c Huisgen R. Dahmen A. Huber H. Tetrahedron Lett. 1969; 10: 1461
- 4a Anagnostaki EE. Zografos A. Chem. Soc. Rev. 2012; 41: 5613
- 4b Nicolaou KC. J. Org. Chem. 2009; 74: 951
- 4c Nicolaou KC. Chen JS. Chem. Soc. Rev. 2009; 38: 2993
- 4d Gravel E. Poupon E. Eur. J. Org. Chem. 2008; 27
- 4e Nicolaou KC. J. Org. Chem. 2005; 70: 7007
- 4f Nicolaou KC. Tetrahedron 2003; 59: 6683
- 4g Nicolaou KC. Montagnon T. Snyder SA. Chem. Commun. 2003; 551
- 5a Posner GH. Kahraman M. Eur. J. Org. Chem. 2003; 3889
- 5b Zhu GZ. Okamura WH. Chem. Rev. 1995; 95: 1877
- 5c Dai HY. Posner GH. Synthesis 1994; 1383
- 6a Thompson S. Coyne AG. Knipe PC. Smith MD. Chem. Soc. Rev. 2011; 40: 4217
- 6b Beaudry CM. Malerich JP. Trauner D. Chem. Rev. 2005; 105: 4757
- 6c Dolbier WR. Jr. Koroniak H. Houk KN. Sheu C. Acc. Chem. Res. 1996; 29: 471
- 7 For a recent review on 4π-electrocyclization, see: Sheikh NS. Org. Biomol. Chem. 2015; 13: 10774
- 8a Wenz DR. Read de Alaniz J. Eur. J. Org. Chem. 2015; 23
- 8b Di Grandi MJ. Org. Biomol. Chem. 2014; 12: 5331
- 8c Tius MA. Chem. Soc. Rev. 2014; 43: 2979
- 8d Spencer WT. III. Vaidya T. Frontier AJ. Eur. J. Org. Chem. 2013; 3621
- 8e Shimada N. Stewart C. Tius MA. Tetrahedron 2011; 67: 5851
- 8f Vaidya T. Eisenberg R. Frontier AJ. ChemCatChem 2011; 3: 1531
- 8g Grant TN. Rieder CJ. West FG. Chem. Commun. 2009; 5676
- 8h Frontier AJ. Collison C. Tetrahedron 2005; 61: 7577
- 8i Pellissier H. Tetrahedron 2005; 61: 6479
- 8j Tius MA. Acc. Chem. Res. 2003; 36: 284
- 8k Santelli-Rouvier C. Santelli M. Synthesis 1983; 429
- 9 Kerr DJ. Flynn BL. Org. Lett. 2012; 14: 1740
- 10 Cai YF. Tang YR. Atodiresei I. Rueping M. Angew. Chem. Int. Ed. 2016; 55: 14126
- 11 Moritz BJ. Mack DJ. Tong LC. Thomson RJ. Angew. Chem. Int. Ed. 2014; 53: 2988
- 12 Zhang WH. Ready JM. J. Am. Chem. Soc. 2016; 138: 10684
- 13 Fu CC. Zhang YB. Xuan J. Zhu CL. Wang BN. Ding HF. Org. Lett. 2014; 16: 3376
- 14 Ren ZQ. Hao Y. Hu XD. Org. Lett. 2016; 18: 4958
- 15 Aoyagi Y. Yamazaki A. Kato R. Tobe F. Fukaya H. Nishikawa T. Nakahashi A. Miura N. Monde K. Takeya K. Tetrahedron Lett. 2011; 52: 1851
- 16a Xu G. Zhao F. Yang X.-W. Zhou J. Yang L.-X. Shen X.-L. Hu Y.-J. Zhao Q.-S. Nat. Prod. Bioprospect. 2011; 1: 81
- 16b Xu G. Peng L. Niu X. Zhao Q. Li R. Sun H. Helv. Chim. Acta 2004; 87: 949
- 16c Esquivel B. Domínguez RM. Hernández-Ortega S. Toscano RA. Rodríguez-Hahn L. Tetrahedron 1994; 50: 11593
- 17 Hill RA. Sutherland A. Nat. Prod. Rep. 2011; 28: 1031
- 18a Misale A. Niyomchon S. Maulide N. Acc. Chem. Res. 2016; 49: 2444
- 18b Xie LG. Bagutski V. Audisio D. Wolf LM. Schmidts V. Hofmann K. Wirtz C. Thiel W. Thiele CM. Maulide N. Chem. Sci. 2015; 6: 5734
- 18c Audisio D. Gopakumar G. Xie LG. Alves LG. Wirtz C. Martins AM. Thiel W. Fares C. Maulide N. Angew. Chem. Int. Ed. 2013; 52: 6313
- 18d Souris C. Frébault F. Patel A. Audisio D. Houk KN. Maulide N. Org. Lett. 2013; 15: 3242
- 18e Souris C. Frébault F. Audisio D. Farès C. Maulide N. Synlett 2013; 24: 1286
- 18f Souris C. Luparia M. Frébault F. Audisio D. Farès C. Goddard R. Maulide N. Chem.–Eur. J. 2013; 19: 6566
- 18g Frébault F. Luparia M. Oliveira MT. Goddard R. Maulide N. Angew. Chem. Int. Ed. 2010; 49: 5672
- 19a Nicolaou KC. Vega JA. Vassilikogiannakis G. Angew. Chem. Int. Ed. 2001; 40: 4441
- 19b Ogawa S. Urabe D. Yokokura Y. Arai H. Arita M. Inoue M. Org. Lett. 2009; 11: 3602
- 20 Gustafson K. Roman M. Fenical W. J. Am. Chem. Soc. 1989; 111: 7519
- 21 Souris C. Misale A. Chen Y. Luparia M. Maulide N. Org. Lett. 2015; 17: 4486
- 22a Misale A. Niyomchon S. Luparia M. Maulide N. Angew. Chem. Int. Ed. 2014; 53: 7068
- 22b Audisio D. Luparia M. Oliveira MT. Klütt D. Maulide N. Angew. Chem. Int. Ed. 2012; 51: 7314
- 22c Luparia M. Oliveira MT. Audisio D. Frébault F. Goddard R. Maulide N. Angew. Chem. Int. Ed. 2011; 50: 12631
- 23a Gampe CM. Carreira EM. Chem.–Eur. J. 2012; 18: 15761
- 23b Gampe CM. Carreira EM. Angew. Chem. Int. Ed. 2011; 50: 2962
- 23c Gampe CM. Boulos S. Carreira EM. Angew. Chem. Int. Ed. 2010; 49: 4092
- 24a Brady SF. Bondi SM. Clardy J. J. Am. Chem. Soc. 2001; 123: 9900
- 24b Brady SF. Singh MP. Janso JE. Clardy J. J. Am. Chem. Soc. 2000; 122: 2116
- 24c Singh MP. Janso JE. Luckman SW. Brady SF. Clardy J. Greenstein M. Maiese WM. J. Antibiot. 2000; 53: 256
- 25 For a review of other approaches to the guanacastepenes, see: Maifeld SV. Lee D. Synlett 2006; 1623
- 26a Liu YQ. Yang L. Tian X. Curr. Bioact. Compd. 2007; 3: 37
- 26b Sthelin HF. von Wartburg A. Cancer Res. 1991; 51: 5
- 27 Ting CP. Maimone TJ. Angew. Chem. Int. Ed. 2014; 53: 3115
- 28 Funk RL. Vollhardt KP. C. J. Am. Chem. Soc. 1980; 102: 5253
- 29 Oppolzer W. J. Am. Chem. Soc. 1971; 93: 3836
- 30a Charest MG. Lerner CD. Brubaker JD. Siegel DR. Myers AG. Science (Washington, D. C.) 2005; 308: 395
- 30b Charest MG. Siegel DR. Myers AG. J. Am. Chem. Soc. 2005; 127: 8292
- 31a Quinkert G. Becker H. Dürner G. Tetrahedron Lett. 1991; 32: 7397
- 31b Shishido K. Hiroya K. Komatsu H. Fukumoto K. Kametani T. J. Chem. Soc., Chem. Commun. 1986; 904
- 31c Quinkert G. Schwartz U. Stark H. Weber W. Baier H. Adam F. Dürner G. Angew. Chem., Int. Ed. Engl. 1980; 19: 1029
- 32a Flores-Gaspar A. Martín N. Synthesis 2013; 45: 563
- 32b Sadana AK. Saini RK. Billups WE. Chem. Rev. 2003; 103: 1539
- 32c Segura JL. Martín N. Chem. Rev. 1999; 99: 3199
- 32d Charlton JL. Alauddin MM. Tetrahedron 1987; 43: 2873
- 33a Paquette LA. Geng F. J. Am. Chem. Soc. 2002; 124: 9199
- 33b Paquette LA. Eur. J. Org. Chem. 1998; 1709
- 34 Nicolaou KC. Wang JH. Tang YF. Botta L. J. Am. Chem. Soc. 2010; 132: 11350
- 35 Liebeskind LS. Tetrahedron 1989; 45: 3053
- 36a Jones RR. Bergman RG. J. Am. Chem. Soc. 1972; 94: 660
- 36b Bergman RG. Acc. Chem. Res. 1973; 6: 25
- 36c Darby N. Kim CU. Salaün JA. Shelton KW. Takada S. Masamune S. J. Chem. Soc., Chem. Commun. 1971; 1516
- 36d Nicolaou KC. Dai WM. Angew. Chem., Int. Ed. Engl. 1991; 30: 1387 ; and references therein
- 37 Knueppel D. Martin SF. Angew. Chem. Int. Ed. 2009; 48: 2569
- 38 Pettit GR. Collins JC. Knight JC. Herald DL. Nieman RA. Williams MD. Pettit RK. J. Nat. Prod. 2003; 66: 544
- 39 For a recent review on the cyclopentanones, see: Simeonov SP. Nunes JP. M. Guerra K. Kurteva VB. Afonso CA. M. Chem. Rev. 2016; 116: 5744 ; and references therein
- 40a Shvartsbart A. Smith AB. J. Am. Chem. Soc. 2015; 137: 3510
- 40b Shvartsbart A. Smith AB. J. Am. Chem. Soc. 2014; 136: 870
- 41a Kakde BN. Kumari P. Bisai A. J. Org. Chem. 2015; 80: 9889
- 41b Kakde BN. De S. Dey D. Bisai A. RSC Adv. 2013; 3: 8176
- 42 For a comprehensive overview of the taiwaniaquinoid family, see: Majetich G. Shimkus JM. J. Nat. Prod. 2010; 73: 284
- 43a Wang J. Wang J. Li C. Meng Y. Wu J. Song C. Chang J. J. Org. Chem. 2014; 79: 6354
- 43b Deng J. Li R. Luo Y. Li J. Zhou S. Li Y. Hu J. Li A. Org. Lett. 2013; 15: 2022
- 43c Alvarez-Manzaneda E. Chahboun R. Cabrera E. Alvarez E. Alvarez-Manzaneda R. Meneses R. Es-Samti H. Fernández A. J. Org. Chem. 2009; 74: 3384
- 43d Majetich G. Shimkus JM. Tetrahedron Lett. 2009; 50: 3311
- 43e Li S. Chiu P. Tetrahedron Lett. 2008; 49: 1741
- 43f Tang S. Xu Y. He J. He Y. Zheng J. Pan X. She X. Org. Lett. 2008; 10: 1855
- 43g Planas L. Mogi M. Takita H. Kajimoto T. Node M. J. Org. Chem. 2006; 71: 2896
- 43h Liang G. Xu Y. Seiple IB. Trauner D. J. Am. Chem. Soc. 2006; 128: 11022
- 43i McFadden RM. Stoltz BM. J. Am. Chem. Soc. 2006; 128: 7738
- 43j Banerjee M. Mukhopadhyay R. Achari B. Banerjee AK. J. Org. Chem. 2006; 71: 2787
- 43k Fillion E. Fishlock D. J. Am. Chem. Soc. 2005; 127: 13144
- 43l Banerjee M. Mukhopadhyay R. Achari B. Banerjee AK. Org. Lett. 2003; 5: 3931
- 43m Lomberget T. Bentz E. Bouyssi D. Balme G. Org. Lett. 2003; 5: 2055
- 44 Mukku VJ. R. V. Edrada RA. Schmitz FJ. Shanks MK. Chaudhuri B. Fabbro D. J. Nat. Prod. 2003; 66: 686
- 45 Kakde BN. Kumar N. Mondal PK. Bisai A. Org. Lett. 2016; 18: 1752
- 46 Dethe DH. Boda R. Murhade GM. Org. Chem. Front. 2015; 2: 645
- 47 Bohlmann F. Zdero C. Le Van N. Phytochemistry 1979; 18: 99
- 48 Yan XX. Hu XD. J. Org. Chem. 2014; 79: 5282
- 49a Marques A. Coeffard V. Chataigner I. Vincent G. Moreau X. Org. Lett. 2016; 18: 5296
- 49b Riveira MJ. Quiroga GN. Mata EG. Gandon V. Mischne MP. J. Org. Chem. 2015; 80: 6515
- 49c Riveira MJ. Mischne MP. J. Org. Chem. 2014; 79: 8244
- 49d Riveira MJ. Mischne MP. Chem.–Eur. J. 2012; 18: 2382
- 49e Dateer RB. Pati K. Liu RS. Chem. Commun. 2012; 48: 7200
- 49f Lin CC. Teng TM. Tsai CC. Liao HY. Liu RS. J. Am. Chem. Soc. 2008; 130: 16417
- 49g Lin CC. Teng TM. Odedra A. Liu RS. J. Am. Chem. Soc. 2007; 129: 3798
- 49h Miller AK. Banghart MR. Beaudry CM. Suh JM. Trauner D. Tetrahedron 2003; 59: 8919
- 50 Li W.-DZ. Duo WG. Zhuang CH. Org. Lett. 2011; 13: 3538
- 51a Paudler WW. Kerley GI. McKay J. J. Org. Chem. 1963; 28: 2194
- 51b Levy V. Zohar S. Bardin C. Vekhoff A. Chaoui D. Rio B. Legrand O. Sentenac S. Rousselot P. Raffoux E. Chast F. Chevret S. Marie JP. Br. J. Cancer 2006; 95: 253
- 51c Kantarjian HM. Talpaz M. Santini V. Murgo A. Cheson B. O’Brien SM. Cancer 2001; 92: 1591
- 52a Li W.-DZ. Wang XW. Org. Lett. 2007; 9: 1211
- 52b Li W.-DZ. Ma BC. J. Org. Chem. 2005; 70: 3277
- 52c Li W.-DZ. Wang YQ. Org. Lett. 2003; 5: 2931
- 53 For the theoretical calculation on the reactivity of amino-pentadienyl species, see: Smith DA. Ulmer CW. J. Org. Chem. 1997; 62: 5110
- 54a William R. Wang S. Ding FQ. Arviana EN. Liu XW. Angew. Chem. Int. Ed. 2014; 53: 10742
- 54b Bow WF. Basak AK. Jolit A. Vicic DA. Tius MA. Org. Lett. 2010; 12: 440
- 54c Shimada N. Ashburn BO. Basak AK. Bow WF. Vicic DA. Tius MA. Chem. Commun. 2010; 46: 3774
- 54d Bonderoff SA. Grant TN. West FG. Tremblay M. Org. Lett. 2013; 15: 2888
- 55 Reyes JC. Romo D. Angew. Chem. Int. Ed. 2012; 51: 6870
- 56a D’Ambrosio M. Guerriero A. Ripamonti M. Debitus C. Waikedre J. Pietra F. Helv. Chim. Acta 1996; 79: 727
- 56b D’Ambrosio M. Guerriero A. Chiasera G. Pietra F. Helv. Chim. Acta 1994; 77: 1895
- 56c D’Ambrosio M. Guerriero A. Debitus C. Ribes O. Pusset J. Leroy S. Pietra F. J. Chem. Soc., Chem. Commun. 1993; 1305
- 57a Huang YW. Frontier AJ. Org. Lett. 2016; 18: 4896
- 57b Brooks JL. Frontier AJ. J. Am. Chem. Soc. 2012; 134: 16551
- 57c Brooks JL. Caruana PA. Frontier AJ. J. Am. Chem. Soc. 2011; 133: 12454
- 58a Zhou Z. Dixon DD. Jolit A. Tius MA. Chem.–Eur. J. 2016; 22: 15929
- 58b Yang BM. Cai PJ. Tu YQ. Yu ZX. Chen ZM. Wang SH. Wang SH. Zhang FM. J. Am. Chem. Soc. 2015; 137: 8344
- 58c Wang XN. Krenske EH. Johnston RC. Houk KN. Hsung RP. J. Am. Chem. Soc. 2015; 137: 5596
- 58d Álvarez E. Faza ON. López CS. Fernández-Rodríguez MA. Sanz R. Chem.–Eur. J. 2015; 21: 12889
- 58e Dhiman S. Ramasastry SS. V. Org. Lett. 2015; 17: 5116
- 58f Jacques B. Hueber D. Hameury S. Braunstein P. Pale P. Blanc A. de Frémont P. Organometallics 2014; 33: 2326
- 58g Hoffmann M. Weibel J.-M. de Frémont P. Pale P. Blanc A. Org. Lett. 2014; 16: 908
- 58h Lee JH. Toste FD. Angew. Chem. Int. Ed. 2007; 46: 912
- 59a Trushkov IV. Uchuskin MG. Butin AV. Eur. J. Org. Chem. 2015; 2999
- 59b Palmer LI. Read de Alaniz J. Synlett 2014; 25: 8
- 59c Palframan MJ. Pattenden G. Chem. Commun. 2014; 50: 7223
- 59d Piutti C. Quartieri F. Molecules 2013; 18: 12290
- 60a Yin BL. Wu YL. Lai JQ. Eur. J. Org. Chem. 2009; 2695
- 60b D’Auria M. Heterocycles 2000; 52: 185
- 61 Duspara PA. Batey RA. Angew. Chem. Int. Ed. 2013; 52: 10862
- 62a Malona JA. Cariou K. Spencer WT. Frontier AJ. J. Org. Chem. 2012; 77: 1891
- 62b Spencer WT. Levin MD. Frontier AJ. Org. Lett. 2011; 13: 414
- 62c Malona JA. Cariou KC. Frontier AJ. J. Am. Chem. Soc. 2009; 131: 7560
- 63 King ML. Chiang CC. Ling HC. Fujita E. Ochiai M. McPhail AT. J. Chem. Soc., Chem. Commun. 1982; 1150
- 64 For a recent review on the synthesis of rocaglamide, see: Zhao Q. Abou-Hamdan H. Désaubry L. Eur. J. Org. Chem. 2016; 5908 ; and references therein
- 65a Giese S. West FG. Tetrahedron 2000; 56: 10221
- 65b Giese S. West FG. Tetrahedron Lett. 1998; 39: 839
- 66a Kwon Y. McDonald R. West FG. Angew. Chem. Int. Ed. 2013; 52: 8616
- 66b Marx VM. Burnell DJ. J. Am. Chem. Soc. 2010; 132: 1685
- 66c Yungai A. West FG. Tetrahedron Lett. 2004; 45: 5445
- 66d Browder CC. Marmsater FP. West FG. Can. J. Chem. 2004; 82: 375
- 66e Wang Y. Schill BD. Arif AM. West FG. Org. Lett. 2003; 5: 2747
- 66f Browder CC. Marmsater FP. West FG. Org. Lett. 2001; 3: 3033
- 66g Giese S. Kastrup L. Stiens D. West FG. Angew. Chem. Int. Ed. 2000; 39: 1970
- 67a Scadeng O. Ferguson MJ. West FG. Org. Lett. 2011; 13: 114
- 67b Rostami A. Wang Y. Arif AM. McDonald R. West FG. Org. Lett. 2007; 9: 703
- 67c Song D. Rostami A. West FG. J. Am. Chem. Soc. 2007; 129: 12019
- 67d White TD. West FG. Tetrahedron Lett. 2005; 46: 5629
- 67e see ref 54a.
- 67f Dhoro F. Kristensen TE. Stockmann V. Yap GP. A. Tius MA. J. Am. Chem. Soc. 2007; 129: 7256
- 67g Dhoro F. Tius MA. J. Am. Chem. Soc. 2005; 127: 12472
- 67h William R. Wang S. Mallick A. Liu XW. Org. Lett. 2016; 18: 4458
- 67i Lempenauer L. Duñach E. Lemière G. Org. Lett. 2016; 18: 1326
- 67j Marx VM. Burnell DJ. Org. Lett. 2009; 11: 1229
- 68 For a review on Wagner–Meerwein shifts, see: Hanson JR. In Comprehensive Organic Synthesis . Vol. 3. Trost BM. Fleming I. Pergamon; Oxford: 1991: 705-719
- 69a Lebœuf D. Theiste E. Gandon V. Daifuku SL. Neidig ML. Frontier AJ. Chem.–Eur. J. 2013; 19: 4842
- 69b Lebœuf D. Wright CM. Frontier AJ. Chem.–Eur. J. 2013; 19: 4835
- 69c Lebœuf D. Gandon V. Ciesielski J. Frontier AJ. J. Am. Chem. Soc. 2012; 134: 6296
- 69d Lebœuf D. Huang J. Gandon V. Frontier AJ. Angew. Chem. Int. Ed. 2011; 50: 10981
- 69e Huang J. Lebœuf D. Frontier AJ. J. Am. Chem. Soc. 2011; 133: 6307
- 69f Huang J. Frontier AJ. J. Am. Chem. Soc. 2007; 129: 8060
- 70 Ishikawa NK. Fukushi Y. Yamaji K. Tahara S. Takahashi K. J. Nat. Prod. 2001; 64: 932
- 71 Ishikawa NK. Yamaji K. Tahara S. Fukushi Y. Takahashi K. Phytochemistry 2000; 54: 777
- 72a Martin MC. Shenje R. France S. Isr. J. Chem. 2016; 56: 499
- 72b Cavitt MA. Phun LH. France S. Chem. Soc. Rev. 2014; 43: 804
- 72c De Simone F. Waser J. Chimia 2009; 63: 162
- 73 Lim KH. Hiraku O. Komiyama K. Kam TS. J. Nat. Prod. 2008; 71: 1591
- 74a Frei R. Staedler D. Raja A. Franke R. Sasse F. Gerber-Lemaire S. Waser J. Angew. Chem. Int. Ed. 2013; 52: 13373
- 74b De Simone F. Saget T. Benfatti F. Almeida S. Waser J. Chem.–Eur. J. 2011; 17: 14527
- 74c De Simone F. Gertsch J. Waser J. Angew. Chem. Int. Ed. 2010; 49: 5767
- 75 Randriambola L. Quirion JC. Kanfan C. Husson HP. Tetrahedron Lett. 1987; 28: 2123
- 76a Patil DV. Cavitt MA. France S. Heterocycles 2012; 84: 1363
- 76b Patil DV. Cavitt MA. Grzybowski P. France S. Chem. Commun. 2011; 47: 10278
- 76c Phun LH. Patil DV. Cavitt MA. France S. Org. Lett. 2011; 13: 1952
- 77 Szporny L. Actual. Pharm. 1977; 29: 87
- 78 For a recent photo-induced Nazarov reaction, see: Pusch S. Schollmeyer D. Opatz T. Org. Lett. 2016; 18: 3043
- 79a Leitich J. Heise I. Rust J. Schaffner K. Eur. J. Org. Chem. 2001; 2719
- 79b Leitich J. Heise I. Werner S. Krürger C. Schaffner K. J. Photochem. Photobiol., A 1991; 57: 127
- 79c Smith AB. III. Agosta WC. J. Am. Chem. Soc. 1973; 95: 1961
- 80a Cai SJ. Xiao ZM. Ou JJ. Shi YB. Gao SH. Org. Chem. Front. 2016; 3: 354
- 80b Cai SJ. Xiao ZM. Shi YB. Gao SH. Chem.–Eur. J. 2014; 20: 8677
- 81a Shi YB. Yang BC. Cai SJ. Gao SH. Angew. Chem. Int. Ed. 2014; 53: 9539
- 81b Churruca F. Fousteris M. Ishikawa Y. von Wantoch Rekowski M. Hounsou C. Surrey T. Giannis A. Org. Lett. 2010; 12: 2096
- 81c Gao SH. Wang QL. Chen C. J. Am. Chem. Soc. 2009; 131: 1410
- 82a Zhu LY. Tong RB. J. Antibiot. 2016; 69: 280
- 82b Yang M. Li J. Li A. Nat. Commun. 2015; 6: 6445
- 82c Meng ZC. Yu HX. Li L. Tao WY. Chen H. Wan M. Yang P. Edmonds DJ. Zhong J. Li A. Nat. Commun. 2015; 6: 6096
- 82d Yang M. Yang XW. Sun HB. Li A. Angew. Chem. Int. Ed. 2016; 55: 2851
- 82e Li HL. Chen QF. Lu ZH. Li A. J. Am. Chem. Soc. 2016; 138: 15555
- 83a Sofiyev V. Lumb J. Volgraf M. Trauner D. Chem.–Eur. J. 2012; 18: 4999
- 83b Carbone A. Lucas CL. Moody CJ. J. Org. Chem. 2012; 77: 9179
- 83c Kumar VP. Gruner KK. Kataeva O. Knölker H. Angew. Chem. Int. Ed. 2013; 52: 11073
- 83d Wang T. Hoye TR. J. Am. Chem. Soc. 2016; 138: 13870
- 84a Shan MD. Sharif EU. O’Doherty GA. Angew. Chem. Int. Ed. 2010; 49: 9492
- 84b Sakaguchi T. Kobayashi S. Katsumura S. Org. Biomol. Chem. 2011; 9: 257
- 84c Kurata Y. Choshi T. Ishihara Y. Hatae N. Nishiyama T. Hibino S. Heterocycles 2014; 88: 297
- 84d Tazaki Y. Tsuchiya Y. Choshi T. Nishiyama T. Hatae N. Nemoto H. Hibino S. Heterocycles 2014; 89: 427
- 84e Hirose Y. Tsuchikawa H. Kobayashi T. Katsumura S. Heterocycles 2015; 90: 150
- 84f Dialer C. Imbri D. Hansen SP. Opatz T. J. Org. Chem. 2015; 80: 11605
- 84g Meng LX. J. Org. Chem. 2016; 81: 7784
- 84h Li XJ. Xue DS. Wang C. Gao SH. Angew. Chem. Int. Ed. 2016; 55: 9942
- 84i Kwon SH. Seo H. Cheon C. Org. Lett. 2016; 18: 5280
- 85 Lu ZY. Li Y. Deng J. Li A. Nat. Chem. 2013; 5: 679
- 86 Zhang Q. Di YT. Li CS. Fang X. Tan CJ. Zhang Z. Zhang Y. He HP. Li SL. Hao XJ. Org. Lett. 2009; 11: 2357
- 87 Li J. Yang P. Yao M. Deng J. Li A. J. Am. Chem. Soc. 2014; 136: 16477
- 88 Xiao WL. Yang LM. Gong NB. Wu L. Wang RR. Pu JX. Li XL. Huang SX. Zheng YT. Li RT. Lu Y. Zheng QT. Sun HD. Org. Lett. 2006; 8: 991
- 89 Yang P. Yao M. Li J. Li Y. Li A. Angew. Chem. Int. Ed. 2016; 55: 6964
- 90 Abe T. Ikeda T. Yanada R. Ishikura M. Org. Lett. 2011; 13: 3356
- 91 Rickards RW. Rothschild JM. Willis AC. de Chazal NM. Kirk J. Kirk K. Saliba KJ. Smith GD. Tetrahedron 1999; 55: 13513
- 92 Bian M. Wang Z. Xiong XC. Sun Y. Matera C. Nicolaou KC. Li A. J. Am. Chem. Soc. 2012; 134: 8078
- 93 TePaske M. Gloer JB. Wicklow DT. Dowd PF. Tetrahedron Lett. 1989; 30: 5965
- 94 Lu ZH. Li HL. Bian M. Li A. J. Am. Chem. Soc. 2015; 137: 13764
- 95a Nakadate S. Nozawa K. Horie H. Fujii Y. Yaguchi T. Heterocycles 2011; 83: 351
- 95b Nakadate S. Nozawa K. Yaguchi T. Heterocycles 2011; 83: 1867
- 96 Yamaguchi AD. Chepiga KM. Yamaguchi J. Itami K. Davies HM. L. J. Am. Chem. Soc. 2015; 137: 644
- 97 Warabi K. Matsunaga S. van Soest RW. M. Fusetani N. J. Org. Chem. 2003; 68: 2765
- 98a Hieda Y. Choshi T. Fujioka H. Hibino S. Eur. J. Org. Chem. 2013; 7391
- 98b Hieda Y. Choshi T. Kishida S. Fujioka H. Hibino S. Tetrahedron Lett. 2010; 51: 3593
- 99 Kotoda N. Shinya K. Furihata K. Hayakawa Y. Seto H. J. Antibiot. 1997; 50: 770
- 100 Marvell EN. Thermal Electrocyclic Reactions . Academic Press; New York: 1980: 260-375
- 101a Tambar UK. Kano T. Zepernick JF. Stoltz BM. J. Org. Chem. 2006; 71: 8357
- 101b Tambar UK. Kano T. Stoltz BM. Org. Lett. 2005; 7: 2413
- 102a Tang Y. Oppenheimer J. Song Z. You L. Zhang X. Husng RP. Tetrahedron 2006; 62: 10785
- 102b Hsung RP. Kurdyumov AV. Sydorenko N. Eur. J. Org. Chem. 2005; 23
- 103a Yamashita S. Iso K. Kitajima K. Himuro M. Hirama M. J. Org. Chem. 2011; 76: 2408
- 103b Yamashita S. Iso K. Hirama M. Org. Lett. 2008; 10: 3413
- 104a Watanabe Y. Aoki S. Tanabe D. Setiawan A. Kobayashi M. Tetrahedron 2007; 63: 4074
- 104b Aoki S. Watanabe Y. Tanabe D. Setiawan A. Arai M. Kobayashi M. Tetrahedron Lett. 2007; 48: 4485
- 104c Aoki S. Watanabe Y. Sanagawa M. Setiawan A. Kotoku N. Kobayashi M. J. Am. Chem. Soc. 2006; 128: 3148
- 105a Funk RL. Belmar J. Tetrahedron Lett. 2012; 53: 176
- 105b He Y. Funk RL. Org. Lett. 2006; 8: 3689
- 106 Mai HN. Langlois N. Das BC. Potier P. C. R. Hebd. Seances Acad. Sci., Ser. C 1970; 270: 2154
- 107 For previous study on 6π ring closure to lactones, see: Alexakis A. Normant JF. Tetrahedron Lett. 1982; 23: 5151
- 108 Sloman DL. Bacon JW. Porco JA. Jr. J. Am. Chem. Soc. 2011; 133: 9952
- 109 Ratnayake R. Lacey E. Tennant S. Gill JH. Capon RJ. Chem.–Eur. J. 2007; 13: 1610
- 110a ref 84g.
- 110b ref 84i.
- 111 Cheng XY. Waters SP. Org. Lett. 2013; 15: 4226
- 112 Ishiuchi K. Kubota T. Ishiyama H. Hayashi S. Shibata T. Kobayashi J. Tetrahedron Lett. 2011; 52: 289
- 113 Chaumontet M. Piccardi R. Baudoin O. Angew. Chem. Int. Ed. 2009; 48: 179
- 114a Bruderer H. Metzeger J. Brossi A. Daly JJ. Helv. Chim. Acta 1976; 59: 2793
- 114b Lu ST. Su TL. Kametani T. Ujiie A. Ihara M. Kukumoto K. Heterocycles 1975; 3: 459
- 115a Guo CJ. Yeh HH. Chiang YM. Sanchez JF. Chang SL. Bruno KS. Wang CC. C. J. Am. Chem. Soc. 2013; 135: 7205
- 115b Neuss N. Nagaraja R. Molloy BB. Huckstep LL. Tetrahedron Lett. 1968; 9: 4467
- 115c Vogel E. Günther H. Angew. Chem., Int. Ed. Engl. 1967; 6: 385
- 116a Frey B. Wells AP. Rogers DH. Mander LN. J. Am. Chem. Soc. 1998; 120: 1914
- 116b Zhang H. Appels DC. Hockless DC. R. Mander LN. Tetrahedron Lett. 1998; 39: 6577
- 117 For syntheses of confertin, see: Kennedy M. McKervey MA. J. Chem. Soc., Perkin Trans. 1 1991; 2565
- 118a Banwell MG. Pure Appl. Chem. 1996; 68: 539
- 118b Kotani E. Miyazaki F. Tobinaga S. J. Chem. Soc., Chem. Commun. 1974; 300
- 118c Schreiber J. Leimgruber W. Pesaro M. Schudel P. Eschenmoser A. Helv. Chim. Acta 1961; 44: 540
- 118d Schreiber J. Leimgruber W. Pesaro M. Schudel P. Eschenmoser A. Angew. Chem. 1959; 71: 637
- 119a Reisman SE. Nani RR. Levin S. Synlett 2011; 2437
- 119b Maier G. Angew. Chem., Int. Ed. Engl. 1967; 6: 402
- 119c Nani RR. Reisman SE. J. Am. Chem. Soc. 2013; 135: 7304
- 119d Levin SL. Nani RR. Reisman SE. J. Am. Chem. Soc. 2011; 133: 774
- 120a Nolsøe JM. Aursnes M. Tungen JE. Hansen TV. J. Org. Chem. 2015; 80: 5377
- 120b Steinhardt SE. Vanderwal CD. J. Am. Chem. Soc. 2009; 131: 7546
- 120c Michels TD. Kier MJ. Kearney AM. Vanderwal CD. Org. Lett. 2010; 12: 3093
- 121a Zincke T. Schreyer F. Justus Liebigs Ann. Chem. 1907; 353: 380
- 121b Zincke T. Justus Liebigs Ann. Chem. 1905; 339: 193
- 121c Zincke T. Würker W. Justus Liebigs Ann. Chem. 1905; 341: 365
- 121d Zincke T. Heuser G. Möller W. Justus Liebigs Ann. Chem. 1904; 333: 296
- 121e Zincke T. Würker W. Justus Liebigs Ann. Chem. 1904; 338: 107
- 122 König W. J. Prakt. Chem. 1904; 69: 105
- 123a Martin DB. C. Nguyen LQ. Vanderwal CD. J. Org. Chem. 2012; 77: 17
- 123b Martin DB. C. Vanderwal CD. Chem. Sci. 2011; 2: 649
- 124a Cannon JS. Overman LE. Angew. Chem. Int. Ed. 2012; 51: 4288
- 124b Mori M. Heterocycles 2010; 81: 259
- 124c Bonjoch J. Solé D. Chem. Rev. 2000; 100: 3455
- 125a Moses JE. Baldwin JE. Adlington RM. Cowley AR. Marquez R. Tetrahedron Lett. 2003; 44: 6625
- 125b Miller AK. Trauner D. Angew. Chem. Int. Ed. 2005; 44: 4602
- 125c Marvell EN. Seubert J. Vogt G. Zimmer G. Moy G. Siegmann JR. Tetrahedron 1978; 34: 1307
- 125d Huisgen R. Dahmen A. Huber H. J. Am. Chem. Soc. 1967; 89: 7130
- 126a Pohnert G. Boland W. Nat. Prod. Rep. 2002; 19: 108
- 126b Pohnert G. Boland W. Tetrahedron 1994; 50: 10235
- 127a Nicolaou KC. Petasis NA. Zipkin RE. Uenishi J. J. Am. Chem. Soc. 1982; 104: 5555
- 127b Nicolaou KC. Petasis NA. Uenishi J. Zipkin RE. J. Am. Chem. Soc. 1982; 104: 5557
- 127c Nicolaou KC. Zipkin RE. Petasis NA. J. Am. Chem. Soc. 1982; 104: 5558
- 127d Nicolaou KC. Petasis NA. Zipkin RE. J. Am. Chem. Soc. 1982; 104: 5560
- 128 Gomi S. Imamura K. Yaguchi T. Kodama Y. Minowa N. Koyama M. J. Antibiot. 1994; 47: 571
- 129 Webster R. Gaspar B. Mayer P. Trauner D. Org. Lett. 2013; 15: 1866
- 130 Beaudry CM. Trauner D. Org. Lett. 2002; 4: 2221
- 131a Leverrier A. Tran huu Dau ME. Retailleau P. Awang K. Guéritte F. Litaudon M. Org. Lett. 2012; 12: 3638
- 131b Leverrier A. Awang K. Guéritte F. Litaudon M. Phytochemistry 2011; 72: 1443
- 132a Moore JC. Davies ES. Walsh DA. Sharma P. Moses JE. Chem. Commun. 2014; 50: 12523
- 132b Sharma P. Ritson DJ. Burnley J. Moses JE. Chem. Commun. 2011; 47: 10605
- 133 For the endo/exo terminology, see: Parker KA. Lim YH. Org. Lett. 2004; 6: 161
- 134a Lim HN. Parker KA. J. Org. Chem. 2014; 79: 919
- 134b Lim HN. Parker KA. Org. Lett. 2013; 15: 398
For representative investigations on the solvent effects of the electrocyclization, see:
For reviews on electrocyclic reactions, see:
For related reviews on Nazarov cyclization, see:
For a recent review on the cyclobutenes, see:
For recent studies on cyclobutenes, see:
For application of cyclobutenes, see:
For a recent review on the derivatives of podophyllotoxin, see:
For reviews, see:
For the selected examples, see:
For isolations, see:
For the bioactivities of its derivatives, see:
For recent studies on 1-aminopentadienyl species in aza-Nazarov reactions, see:
For a recent example on 3-aminopentadienyl cation in aza-Nazarov cyclization, see:
For selected examples on Nazarov reactions initiated by conjugated addition, see:
For recent studies on Nazarov reactions initiated by cascade rearrangements, see:
For reviews on Piancatelli rearrangements, see:
For other plausible mechanisms of Piancatelli rearrangements, see:
For azides:
For halides:
For amines:
For others:
For reviews on formal homo-Nazarov reactions, see:
For recent applications in total synthesis, see:
For recent applications in aza-6π cyclization to pyridine frameworks, see:
For syntheses of hainanolidol and harringtonolide, see:
For syntheses of colchicine, see:
For the synthesis of salvileucalin B, see:
For recent reviews on the synthesis of strychnine, see:
For tricyclooctene skeletons, see:
For bicyclic octadiene skeletons, see: