Subscribe to RSS
DOI: 10.1055/s-0031-1289520
Buchner and Beyond: Arene Cyclopropanation as Applied to Natural Product Total Synthesis
Publication History
Publication Date:
06 October 2011 (online)
Abstract
Buchner and Curtius first reported the cyclopropanation of arenes in 1885. Since the initial discovery, the Buchner reaction has been the subject of significant research by both physical and synthetic organic chemists. Described herein is a brief overview of the Buchner reaction and related arene cyclopropanation processes, with an emphasis on their application to natural product total synthesis.
Key words
Buchner - cyclopropanation - diazo - norcaradiene - cycloheptatriene - total synthesis
-
1a
Buchner E.Curtius T. Ber. Dtsch. Chem. Ges. 1885, 2377 -
1b
Buchner E. Ber. Dtsch. Chem. Ges. 1896, 106 - 2
Doering WVE.Laber G.Vonderwahl R.Chamberlain NF.Williams RB. J. Am. Chem. Soc. 1956, 78: 5448 - Two other groups also proposed that the Buchner reaction provides cycloheptatriene products; however, Doering’s report ² was the first to confirm this assignment by ¹H NMR. See:
-
3a
DeJong AWK. Recl. Trav. Chim. 1937, 198 -
3b
Grundmann C.Ottmann G. Justus Liebigs Ann. Chem 1953, 163 - Reviews:
-
4a
Maier G. Angew. Chem., Int. Ed. Engl. 1967, 6: 402 -
4b
McNamara OA.Maguire AR. Tetrahedron 2011, 67: 9 - 5First direct observation of bicyclo[4.1.0]hepta-2,4-diene:
- 5
Rubin MB. J. Am. Chem. Soc. 1981, 103: 7791 - 6
Wehner R.Guenther H. J. Am. Chem. Soc. 1975, 97: 923 - 7For an early example see:
- 7
Ciganek E. J. Am. Chem. Soc. 1967, 89: 1454 - For early examples, see:
-
8a
Prinzbach H.Fischer U.Cruse R. Angew. Chem., Int. Ed. Engl. 1966, 5: 251 -
8b
Ganter C.Roberts JD. J. Am. Chem. Soc. 1966, 88: 741 -
9a
Vogel E.Roth HD.Wiedeman W.Gunther H.Eimer J. Justus Liebigs Ann. Chem. 1972, 1 -
9b
Roth WR.Klarner FG.Siepert G.Lennartz HW. Chem. Ber. 1992, 125: 217 -
10a
Pommer H. Angew. Chem. 1950, 62: 281 -
10b
Bartels-Keith JR.Johnson AW.Taylor WI. J. Chem. Soc. 1951, 2352 -
11a
Scott LT. Chem. Commun. 1973, 22: 882 -
11b
Scott LT.Minton MA.Kirms MA. J. Am. Chem. Soc. 1980, 102: 6311 -
12a
Anciaux AJ.Demonceau A.Hubert AJ.Noels AF.Petiniot N.Teyssie P. Chem. Commun. 1980, 16: 765 -
12b
Anciaux AJ.Demonceau A.Noels AF.Hubert AJ.Warin R.Teyssie P. J. Org. Chem. 1981, 46: 873 - Copper and rhodium are the most commonly employed catalysts, however, silver and iron catalysts have also been reported. Silver:
-
13a
Lovely CJ.Browning RG.Badarinarayana V.Dias HVR. Tetrahedron Lett. 2005, 46: 2453 - Iron:
-
13b
Mbuvi HM.Woo LK. J. Porphyrins Phthalocyanines 2009, 13: 136 - Reviews:
-
14a
Doyle MP.McKervey MA.Ye T. Modern Catalytic Methods for Organic Synthesis with Diazo Compounds John Wiley and Sons; New York: 1998. p.298 -
14b
Ye T.Mckervey MA. Chem. Rev. 1994, 94: 1091 -
14c
Merlic CA.Zechman AL. Synthesis 2003, 1137 -
14d
Foley DA.Maguire AR. Tetrahedron 2011, 67: 1131 -
15a
McKervey MA.Tuladhar SM.Twohig MF. Chem. Commun. 1984, 2: 129 -
15b
Kennedy M.McKervey MA.Maguire AR.Tuladhar SM.Twohig MF. J. Chem. Soc., Perkin Trans. 1 1990, 4: 1047 -
15c
Maguire AR.O’Leary P.Harrington F.Lawrence SE.Blake AJ.
J. Org. Chem. 2001, 66: 7166 -
16a
Pusino A.Saba A.Rosnati V. Tetrahedron 1986, 42: 4319 -
16b
Doyle MP.Shanklin MS.Pho HQ. Tetrahedron Lett. 1988, 29: 2639 -
16c
Moody CJ.Miah S.Slawin AMZ.Mansfield DJ.Richards IC.
J. Chem. Soc., Perkin Trans. 1 1998, 24: 4067 - 17
Padwa A.Austin DJ.Price AT.Semones MA.Doyle MP.Protopopova MN.Winchester WR.Tran A. J. Am. Chem. Soc. 1993, 115: 8669 -
18a
Wee AGH.Liu B.Zhang L. J. Org. Chem. 1992, 57: 4404 -
18b
Padwa A.Austin DJ.Price AT.Semones MA.Doyle MP.Protopopova MN.Winchester WR.Tran A. J. Am. Chem. Soc. 1993, 115: 8669 - 19
Kennedy M.McKervey MA. J. Chem. Soc., Perkin Trans. 1 1991, 10: 2565 -
20a
Frey B.Wells AP.Rogers DH.Mander LN. J. Am. Chem. Soc. 1998, 120: 1914 -
20b
Frey B.Wells AP.Roden F.Au TD.Hockless DC.Willis AC.Mander LN. Aust. J. Chem. 2000, 53: 819 - 21Manderand colleagues subsequently reported an alternative approach to the related natural product harringtonolide:
- 21
Zhang H.Appels DC.Hockless DDR.Mander LN. Tetrahedron Lett. 1998, 39: 6577 - 22
Taber DF.Ruckle RE. J. Am. Chem. Soc. 1986, 108: 7686 -
23a
Rogers DH.Morris JC.Roden FS.Frey B.King GR.Russkamp F.-W.Bell RA.Mander LN. Pure Appl. Chem. 1996, 68: 515 -
23b
Morris JC.Mander LN.Hockless DCR. Synthesis 1998, 455 - 24
King GR.Mander LN.Monck NJT.Morris JC.Zhang HB. J. Am. Chem. Soc. 1997, 119: 3828 - 25
Aoyagi Y.Yamazaki A.Nakatsugawa C.Fukaya H.Takeya K.Kawauchi S.Izumi H. Org. Lett. 2008, 10: 4429 - 26
Levin S.Nani RR.Reisman SE. Org. Lett. 2010, 12: 780 - 29
Levin SL.Nani RR.Reisman SE. J. Am. Chem. Soc. 2011, 133: 774 -
30a
Boeckman RK.Flann CJ.Poss KM. J. Am. Chem. Soc. 1985, 107: 4359 -
30b
Boeckman RK.Shair MD.Vargas JR.Stolz LA. J. Org. Chem. 1993, 58: 1295 -
30c
Boeckman RK.Reeder MR. J. Org. Chem. 1997, 62: 6456 -
30d
Boeckman RK.Zhang J.Reeder MR. Org. Lett. 2002, 4: 3891 -
32a
Doyle MP.Ene DG.Forbes DC.Pillow TH. Chem. Commun. 1999, 17: 1691 -
32b
O’Keeffe S.Harrington F.Maguire AR. Synlett 2007, 2367 -
32c
O’Neill S.O’Keeffe S.Harrington F.Maguire AR. Synlett 2009, 2312
References and Notes
Cyclopentanones i and ii were determined to be the major byproducts (Figure [²] ).
28Substrates 35b and 35c were screened against an array of rhodium and copper catalysts; Table [¹] , entries 9 and 10 represent the best catalysts identified for the formation of 36b and 36c, respectively.
31Ketoaldehyde iii (Figure [³] ) is also formed in 36% yield; iii can be converted into 32 using catalytic Rh(cod)Cl2 and diphenylphosphinopropane. See: Phan D. H. T., Kim B., Dong V. M.; J. Am. Chem. Soc.; 2009, 131: 156