Synlett 2017; 28(19): 2525-2538
DOI: 10.1055/s-0036-1590874
account
© Georg Thieme Verlag Stuttgart · New York

Straightforward Strategies for the Preparation of NH-Sulfox­imines: A Serendipitous Story

James A. Bull*
a   Department of Chemistry, Imperial College London, South Kensington, London, SW7 2AZ, UK   Email: j.bull@imperial.ac.uk
,
Leonardo Degennaro
b   Department of Pharmacy — Drug Sciences, University of Bari “A. Moro”, Via E. Orabona 4, Bari 70125, Italy   Email: renzo.luisi@uniba.it
,
Renzo Luisi*
b   Department of Pharmacy — Drug Sciences, University of Bari “A. Moro”, Via E. Orabona 4, Bari 70125, Italy   Email: renzo.luisi@uniba.it
› Author Affiliations
Further Information

Publication History

Received: 31 May 2017

Accepted after revision: 18 July 2017

Publication Date:
05 September 2017 (online)


Abstract

Sulfoximines are emerging as valuable new isosteres for use in medicinal chemistry, with the potential to modulate physicochemical properties. Recent developments in synthetic strategies have made the unprotected ‘free’ NH-sulfoximine group more readily available, facilitating further study. This account reviews approaches to NH-sulfoximines, with a focus on our contribution to the field. Starting from the development of catalytic strategies involving transition metals, more sustainable metal-free processes have been discovered. In particular, the use of hypervalent iodine reagents to mediate NH-transfer to sulfoxides is described, along with an assessment of the substrate scope. Furthermore, a one-pot strategy to convert sulfides directly into NH-sulfoximines is discussed, with N- and O-transfer occurring under the reaction conditions. Mechanistic evidence for the new procedures is included as well as relevant synthetic applications that further exemplify the potential of these approaches.

1 Introduction

2 Strategies to Form NH-Sulfoximines Involving Transition-Metal Catalysts

3 Metal-Free Strategies to Prepare NH-Sulfoximines

4 Mechanistic Evidence for the Direct Synthesis of NH-Sulfoximines from Sulfoxides and Sulfides

5 Further Applications

6 Conclusion

 
  • References

  • 1 Bentley HR. McDermott EE. Pace J. Whitehead JK. Moran T. Nature 1949; 163: 675
  • 2 Reggelin M. Zur C. Synthesis 2000; 1
    • 3a Koep S. Gais H.-J. Raabe G. J. Am. Chem. Soc. 2003; 125: 13243
    • 3b Shen X. Miao W. Ni C. Hu J. Angew. Chem. Int. Ed. 2014; 53: 775
    • 3c Frings M. Atodiresei I. Wang Y. Runsink J. Raabe G. Bolm C. Chem. Eur. J. 2010; 16: 4577
    • 3d Shen X. Liu Q. Zhang W. Hu J. Eur. J. Org. Chem. 2016; 906
    • 4a Bolm C. Verrucci M. Simic O. Cozzi PG. Raabe G. Okamura H. Chem. Commun. 2003; 2826
    • 4b Langner M. Bolm C. Angew. Chem. Int. Ed. 2004; 43: 5984
    • 4c Langner M. Remy P. Bolm C. Chem. Eur. J. 2005; 11: 6254
    • 5a Yadav MR. Rit RK. Sahoo AK. Org. Lett. 2013; 15: 1638
    • 5b Yadav MR. Rit RK. Sahoo AK. Chem. Eur. J. 2012; 18: 5541
    • 5c Rit RK. Yadav MR. Ghosh K. Shankar M. Sahoo AK. Org. Lett. 2014; 16: 5258
    • 5d Ghosh K. Rit RK. Ramesh E. Sahoo AK. Angew. Chem. Int. Ed. 2016; 55: 7821
    • 5e Cheng Y. Dong W. Parthasarathy K. Bolm C. Org. Lett. 2017; 19: 726
  • 6 Gnamm C. Jeanguenat A. Dutton AC. Grimm C. Kloer DP. Crossthwaite AJ. Bioorg. Med. Chem. Lett. 2012; 22: 3800
  • 7 Lücking U. Angew. Chem. Int. Ed. 2013; 52: 9399
    • 8a Bizet V. Hendriks CM. M. Bolm C. Chem. Soc. Rev. 2015; 44: 3378
    • 8b Worch C. Mayer AC. Bolm C. In Organosulfur Chemistry in Asymmetric Synthesis . Toru T. Bolm C. Wiley-VCH; Weinheim: 2008: 209

      For the use of flow chemistry in sulfoximine synthesis, see:
    • 9a Lebel H. Piras H. Borduy M. ACS Catal. 2016; 6: 1109
    • 9b Gutmann B. Elsner P. O’Kearney-McMullan A. Goundry W. Roberge DM. Kappe CO. Org. Process Res. Dev. 2015; 19: 1062

      For the cross-coupling of sulfoximine-containing building blocks, see:
    • 10a Steinkamp A.-D. Wiezorek S. Brosge F. Bolm C. Org. Lett. 2016; 18: 5348
    • 10b Sirvent JA. Bierer D. Webster R. Lücking U. Synthesis 2017; 49: 1024
    • 10c Battula SR. K. Rama Kishore Putta VP. Subbareddy GV. Chakravarthy IE. Saravanan V. Org. Biomol. Chem. 2017; 15: 3742
    • 10d Cho GY. Okamura H. Bolm C. J. Org. Chem. 2005; 70: 2346
    • 10e Tota A. Fanelli F. Falcicchio A. Luisi R. Degennaro L. Chem. Heterocycl. Compd. 2017; 53: 322
    • 11a Goldberg FW. Kettle JG. Xiong J. Lin D. Tetrahedron 2014; 70: 6613
    • 11b Goldberg FW. Kettle JG. Kogej T. Perry MW. D. Tomkinson NP. Drug Discovery Today 2015; 20: 11
    • 12a Lücking U. Jautelat R. Krüger M. Brumby T. Lienau P. Schäfer M. Briem H. Schulze J. Hillisch A. Reichel A. Wengner AM. Siemeister G. Chem. Med. Chem. 2013; 8: 1067
    • 12b Siemeister G. Lücking U. Wengner AM. Lienau P. Steinke W. Schatz C. Mumberg D. Ziegelbauer K. Mol. Cancer Ther. 2012; 11: 2265
    • 12c Foote KM. Lau A. Nissink JW. M. Future Med. Chem. 2015; 7: 873
    • 12d Foote KM. Nissink JW. M. Turner P. (AstraZeneca) WO2011154737 A1, 2011
  • 13 Frings M. Bolm C. Blum A. Gnamm C. Eur. J. Med. Chem. 2017; 126: 225
  • 14 Sirvent JA. Lücking U. Chem. Med. Chem. 2017; 12: 487
  • 15 Teng F. Cheng J. Bolm C. Org. Lett. 2015; 17: 3166
  • 16 Sedelmeier J. Bolm C. J. Org. Chem. 2005; 70: 6904
    • 18a Chen XY. Wang L. Frings M. Bolm C. Org. Lett. 2014; 16: 3796
    • 18b Wang H. Cheng Y. Becker P. Raabe G. Bolm C. Angew. Chem. Int. Ed. 2016; 55: 12655
  • 19 Cheng Y. Dong W. Wang L. Parthasarathy K. Bolm C. Org. Lett. 2014; 16: 2000
  • 20 Cheng H. Wen J. Bolm C. Chem. Eur. J. 2017; DOI: 10.1002/chem.201700953.
  • 21 Teng F. Yu JT. Zhou Z. Chu H. Cheng J. J. Org. Chem. 2015; 80: 2822
  • 22 Bohnen C. Bolm C. Org. Lett. 2015; 17: 3011
  • 23 Zhu H. Yu J.-T. Cheng J. Chem. Commun. 2016; 52: 11908
  • 24 Wang H. Frings M. Bolm C. Org. Lett. 2016; 18: 2431
  • 25 Dong S. Frings M. Cheng H. Wen J. Zhang D. Raabe G. Bolm C. J. Am. Chem. Soc. 2016; 138: 2166
    • 26a Tomooka CS. Carreira EM. Helv. Chim. Acta 2002; 3773
    • 26b Mancheno OG. Bolm C. Chem. Eur. J. 2007; 13: 6674
    • 26c Lebel H. Piras H. Bartholoméüs J. Angew. Chem. Int. Ed. 2014; 53: 7300
    • 27a Wang J. Frings M. Bolm C. Chem. Eur. J. 2014; 20: 966
    • 27b Müller JF. K. Vogt P. Tetrahedron Lett. 1998; 39: 4805
    • 27c Cren S. Kinahan TC. Skinner CL. Tye H. Tetrahedron Lett. 2002; 43: 2749
    • 27d Lacôte E. Amatore M. Fensterbank L. Malacria M. Synlett 2002; 116
    • 27e Cho GY. Bolm C. Org. Lett. 2005; 7: 4983
  • 28 Okamura H. Bolm C. Org. Lett. 2004; 6: 1305
    • 29a Bizet V. Buglioni L. Bolm C. Angew. Chem. Int. Ed. 2014; 53: 5639
    • 29b Bizet V. Bolm C. Eur. J. Org. Chem. 2015; 2854
  • 30 Miao J. Richards NG. J. Ge H. Chem. Commun. 2014; 50: 9687
    • 31a Bach T. Körber C. Tetrahedron Lett. 1998; 39: 5015
    • 31b Bach T. Körber C. Eur. J. Org. Chem. 1999; 1033
  • 32 Zenzola M. Doran R. Luisi R. Bull JA. J. Org. Chem. 2015; 80: 6391
  • 33 For optimization of in situ iminoiodinane formation using MgO, see: Espino CG. Du Bois J. Angew. Chem. Int. Ed. 2001; 40: 598
  • 34 Johnson CR. Kirchhoff RA. Corkins HG. J. Org. Chem. 1974; 39: 2458
    • 35a For related studies, see: Buglioni L. Bizet V. Bolm C. Adv. Synth. Catal. 2014; 356: 2209
    • 35b Also see: Marzag H. Schuler M. Tatibouët A. Reboul V. Eur. J. Org. Chem. 2017; 896
  • 36 Johnson CR. Haake M. Schroeck CW. J. Am. Chem. Soc. 1970; 92: 6594
  • 37 Wang J. Zhang J. Miao K. Yun H. Shen HC. Zhao W. Liang C. Tetrahedron Lett. 2017; 58: 333
    • 38a Mendiola J. Rincon JA. Mateos C. Soriano JF. de Frutos O. Niemeier JK. Davis EM. Org. Process Res. Dev. 2009; 13: 263
    • 38b Tamura Y. Minamikawa J. Sumoto K. Fujii S. Ikeda M. J. Org. Chem. 1973; 38: 1239
  • 39 Cho GY. Bolm C. Tetrahedron Lett. 2005; 46: 8007
  • 40 Dannenberg CA. Fritze L. Krauskopf F. Bolm C. Org. Biomol. Chem. 2017; 15: 1086
  • 41 Krasnova LB. Hili RM. Chernoloz OV. Yudin AK. ARKIVOC 2005; (iv): 26
  • 42 Siu T. Yudin AK. Org. Lett. 2002; 4: 1839
  • 43 Mancheno OM. Bolm C. Org. Lett. 2007; 9: 3809
  • 44 Stoss P. Satzinger G. Tetrahedron Lett. 1973; 14: 267
  • 45 Zenzola M. Doran R. Degennaro L. Luisi R. Bull JA. Angew. Chem. Int. Ed. 2016; 55: 7203
  • 46 Bull Group Chemistry: https://youtu.be/4KpDQnGHi28
    • 47a Collins KD. Glorius F. Nat. Chem. 2013; 5: 597
    • 47b Collins KD. Rühling A. Glorius F. Nat. Protoc. 2014; 9: 1348
    • 47c Collins KD. Glorius F. Acc. Chem. Res. 2015; 48: 619
  • 48 Tota A. Zenzola M. Chawner SJ. St John-Campbell S. Carlucci C. Romanazzi G. Degennaro L. Bull JA. Luisi R. Chem. Commun. 2017; 53: 348
  • 49 Silva LF. Lopes NP. Tetrahedron Lett. 2005; 46: 6023
  • 50 R. Luisi and J. A. Bull groups, unpublished results.
  • 51 Iacobucci C. Reale S. De Angelis F. Angew. Chem. Int. Ed. 2016; 55: 2980
  • 52 Ivanov AS. Popov IA. Boldyrev AI. Zhdankin VV. Angew. Chem. Int. Ed. 2014; 53: 9617
  • 53 Ochiai M. Kaneaki T. Tada N. Miyamoto K. Chuman H. Shiro M. Hayashi S. Nakanishi W. J. Am. Chem. Soc. 2007; 129: 12938
  • 54 Dohi T. Kita Y. Hypervalent Iodine . In Iodine Chemistry and Applications . John Wiley & Sons; Hoboken: 2015. Chap. 7, 103-15
  • 55 Lohier J.-F. Glachet T. Marzag H. Gaumont A.-C. Reboul V. Chem. Commun. 2017; 53: 2064