Synlett, Table of Contents Synlett 2018; 29(02): 203-208DOI: 10.1055/s-0036-1590917 letter © Georg Thieme Verlag Stuttgart · New York Metal-Free Mild Synthesis of Novel 1′H-Spiro[Cycloalkyl-1,2′-quinazolin]-4′(3′H)-ones by an Organocatalytic Cascade Reaction Rathinam Ramesh a Department of Chemistry, Periyar University, Periyar Palkalai Nagar, Salem-636011, Tamil Nadu, India , Periyathambi Kalisamy a Department of Chemistry, Periyar University, Periyar Palkalai Nagar, Salem-636011, Tamil Nadu, India , Jan Grzegorz Malecki b Department of Crystallography, University of Silesia, Szkolna 9, 40-006 Katowice, Poland Email: lalitha253@periyaruniversity.ac.in , Appaswami Lalitha* a Department of Chemistry, Periyar University, Periyar Palkalai Nagar, Salem-636011, Tamil Nadu, India › Author Affiliations Recommend Article Abstract All articles of this category Abstract A concise organocatalytic method for the facile synthesis of some novel 1′H-spiro[cycloalkyl-1,2′-quinazolin]-4′(3′H)-ones via a one-pot, three-component condensation of isatoic anhydride, aryl or aliphatic amines and a cyclic ketone is described. Key words Key wordsspiro compounds - quinazolinones - isatoic anhydride - amines - cycloalkanones - multicomponent reactions Full Text References References and Notes 1a Corey EJ. Cheng X.-M. The Logic of Chemical Synthesis . Wiley; New York: 1989: 1 1b Tietze LF. Brasche G. Gericke K. Domino Reactions in Organic Synthesis . Wiley-VCH; Weinheim: 2006 1c Trost BM. Science 1991; 254: 1471 1d Nicolaou KC. Vourloumis D. Winssinger N. Baran PS. Angew. Chem. Int. Ed. 2000; 39: 44 1e Nicolaou KC. Hale CR. H. Nilewski C. Ioannidou HA. Chem. Soc. Rev. 2012; 41: 5185 2a Tseng M.-C. Chu Y.-W. Tsai H.-P. Lin C.-M. Hwang J. Chu Y.-H. Org. Lett. 2011; 13: 920 2b Liu J.-F. Ye P. Zhang B.-L. Bi G. Sargent K. Yu L.-B. Yohannes D. Baldino CM. J. Org. Chem. 2005; 70: 6339 2c Foley P. Eghbali N. Anastas PT. J. Nat. Prod. 2010; 73: 811 3 Rambabu D. Kiran Kumar S. Sreenivas BY. Sandra S. Kandale A. Misra P. Basaveswara Rao MV. Pal M. Tetrahedron Lett. 2013; 54: 495 4a Yale HL. Kalkstin M. J. Med. Chem. 1967; 10: 334 4b Peet NP. Sunder S. Cregge RJ. J. Org. Chem. 1976; 41: 2733 4c Jiang JB. Hesson DP. Dusak BA. Dexter DL. Kang GL. Hamel E. J. Med. Chem. 1990; 33: 1721 4d Ozaki K.-i. Yamada Y. Oine T. Ishizuka T. Iwasawa Y. J. Med. Chem. 1985; 28: 568 5 Safari J. Gandomi-Ravandi S. J. Mol. Catal. A: Chem. 2014; 390: 1 6 Hour M.-J. Huang L.-J. Kuo S.-C. Xia Y. Bastow K. Nakanishi Y. Hamel E. Lee K.-H. J. Med. Chem. 2000; 43: 4479 7 Birch HL. Buckley GM. Davies N. Dyke HJ. Frost EJ. Gilbert PJ. Hannah DR. Haughan AF. Madigan MJ. Morgan T. Pitt WR. Ratcliffe AJ. Ray NC. Richard MD. Sharpe A. Taylor AJ. Whitworth JM. Williams SC. Bioorg. Med. Chem. Lett. 2005; 15: 5335 8 Bonola G. Da Re P. Magistretti MJ. Massarani E. Setnikar I. J. Med. Chem. 1968; 11: 1136 9 Bolger JW. US 3257397, 1966 10 Okumura K. Oine T. Yamada Y. Hayashi G. Nakama M. J. Med. Chem. 1968; 11: 348 11 Cohen E. Klarberg B. Vaughan JR. Jr. J. Am. Chem. Soc. 1959; 81: 5508 12 Alagarsamy V. Solomon VR. Murugan M. Bioorg. Med. Chem. 2007; 15: 4009 13 Levin JI. Chan PI. Bailey T. Katocs AS. Jr. Venkatesan AM. Bioorg. Med. Chem. Lett. 1994; 4: 1141 14 Beau de Loménie G. Armengaud A. Houssard G. FR 1893(M), 1963 15 Schipper ES. US 3265697, 1966 16 Hirose N. Kuriyama S. Sohda S. Sakaguchi K. Yamamoto H. Chem. Pharm. Bull. 1973; 21: 1005 17 Mustazza C. Borioni A. Sestili I. Sbraccia M. Rodomonte A. Ferretti R. Del Giudice MR. Chem. Pharm. Bull. 2006; 54: 611 18 Schramm S. Schmitz E. Grundemann E. J. Prakt. Chem. 1984; 326: 279 19 Michael JP. Nat. Prod. Rep. 2008; 25: 166 20 Imagawa J. Sakai K. Eur. J. Pharmacol. 1986; 131: 257 21 Dempcy RQ. Skibo EB. Biochemistry 1991; 30: 8480 22 Gackenheimer SL. Schaus JM. Gehlert DR. J. Pharmacol. Exp. Ther. 1995; 274: 1558 23 Molamas MS. Miller J. J. Med. Chem. 1991; 34: 1492 24a Ramesh R. Lalitha A. RSC Adv. 2015; 5: 51188 24b Ramesh R. Lalitha A. Res. Chem. Intermed. 2015; 41: 8009 24c Ramesh R. Maheswari S. Murugesan S. Sandhiya R. Lalitha A. Res. Chem. Intermed. 2015; 41: 8233 24d Ramesh R. Vadivel P. Maheswari S. Lalitha A. Res. Chem. Intermed. 2016; 42: 7625 24e Ramesh R. Lalitha A. ChemistrySelect 2016; 1: 2085 24f Ramesh R. Madhesh R. Malecki JG. Lalitha A. ChemistrySelect 2016; 1: 5196 24g Ramesh R. Nagasundaram N. Meignanasundar D. Lalitha A. Res. Chem. Intermed. 2017; 43: 1767 25 1′ H-Spiro[cycloalkyl-1,2′-quinazolin]-4′(3′ H)-ones 4a– l and 6a–l; General Procedure A 50 mL round-bottomed flask was charged with MeOH (5 mL), isatoic anhydride (2; 3 mmol), the appropriate amine 1 (3 mmol), and AcOH (10 mol%), and the mixture was stirred at r.t. for about 5 min. Cyclohexanone or cyclopentanone (3 mmol) in MeOH (5 mL) was added, and the resulting mixture was stirred at the reflux temperature until the reaction was complete [TLC; EtOAc–hexane (3:7); see Tables 2 and 3]. The mixture was allowed to cool to r.t., and the resulting solid was collected by filtration. The crude product was purified by crystallization from EtOH. 26 3′-(4-Isopropylphenyl)-1′ H-spiro[cyclohexane-1,2′-quinazolin]-4′(3′ H)-one (4b) Colorless crystals; yield: 914 mg (91%); mp 208–210 °C. 1H NMR (400 MHz, DMSO-d6 ): δ = 0.91 (d, J = 12.0 Hz, 1 H, CH2), 1.23 (d, J = 6.8 Hz, 6 H, CH2), 1.29 (d, J = 12.4 Hz, 2 H, CH2), 1.55 (m, 5 H, CH2), 2.01 (d, J = 12.0 Hz, 2 H, CH), 2.91 (m, 1 H, CH), 6.68 (s, 1 H, ArH), 6.70 (s, 1 H, NH), 7.03 (m, 3 H, ArH), 7.27 (d, J = 6.8 Hz, 3 H, ArH), 7.63 (t, J = 7.2 Hz, 1 H, ArH). 13C NMR (100 MHz, DMSO-d6 ): δ = 21.1, 23.7, 24.0, 32.9, 34.5, 72.9, 115.1, 115.6, 117.1, 126.4, 127.5, 130.0, 132.9, 135.7, 145.5, 147.3, 162.8. Anal. Calcd for C22H26N2O (334.45): C 79.0, H 7.84, N 8.38; Found: C 79.44, H 8.15, N 8.76. 27 Crystals of compounds 4a, 4e, and 6e were mounted on a Gemini A Ultra Oxford Diffraction automatic diffractometer equipped with a CCD detector. Data were collected with graphite-monochromated MoKα radiation (λ = 0.71073 Å) at 295(2) K with an ω scan mode. Lorentz, polarization, and empirical absorption corrections using spherical harmonics implemented in the SCALE3 ABSPACK scaling algorithm were applied.30 The structure was solved by direct methods and subsequently completed by difference Fourier recycling. Nonhydrogen atoms were refined anisotropically by using the full-matrix least-squares technique. Hydrogen atoms were found by difference Fourier synthesis after four cycles of anisotropic refinement, and refined as riding on the adjacent carbon atom with an individual isotropic temperature factor equal to 1.2 times the value of equivalent temperature factor of the parent atom. Olex231 and SHELXS, SHELXL32 programs were used for all the calculations. 28 CCDC 1543174, 1543282, and 1543283 contains the supplementary crystallographic data for compounds 4a, 4e, and 6e, respectively. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures. 29 3′-(4-Isopropylphenyl)-1′ H-spiro[cyclopentane-1,2′-quinazolin]-4′(3′ H)-one (6b) Colorless crystals; yield: 907 mg (94%); mp 244–246 °C. 1H NMR (400 MHz, DMSO-d6 ): δ = 1.22 (d, J = 6.8, 6 H, CH3), 1.43 (s, 2 H, CH2), 1.71 (d, J = 7.6 Hz, 4 H), 1.89 (s, 2 H, CH2), 2.91 (m, 1 H, CH), 6.71 (t, J = 7.2 Hz, 1 H, ArH), 6.86 (d, J = 8.0 Hz, 1 H, ArH), 6.93 (s, 1 H, NH), 7.10 (d, J = 8.0 Hz, 2 H, ArH), 7.28 (d, J = 7.6 Hz, 3 H, ArH), 7.67 (d, J = 7.2 Hz, 1 H, ArH). 13C NMR (100 MHz, DMSO-d6 ): δ = 21.2, 23.7, 32.9, 36.2, 81.6, 114.9, 115.6, 117.1, 126.5, 127.8, 129.7, 132.9, 136.1, 146.4, 147.4, 163.0. Anal. Calcd for C21H24N2O (320.43): C 78.71, H 7.55, N 8.74; Found: C 79.26, H 7.89, N 9.03. 30 CrysAlis RED . ; Version 1.171.37.35g Oxford Diffraction Ltd; London: 31 Dolomanov OV. Bourhis LJ. Gildea RJ. Howard JA. K. Puschmann H. J. Appl. Crystallogr. 2009; 42: 339 32 Sheldrick GM. Acta Crystallogr., Sect. A 2008; 64: 112 Supplementary Material Supplementary Material Supporting Information CIF File