Synlett 2017; 28(20): 2966-2970
DOI: 10.1055/s-0036-1590926
letter
© Georg Thieme Verlag Stuttgart · New York

Preparation of Aryl(dicyclohexyl)phosphines by C–P Bond-Forming Cross-Coupling in Water Catalyzed by an Amphiphilic-Resin-Supported Palladium Complex

Yoshinori Hirai
Institute for Molecular Science (IMS), Okazaki 444-8787, Japan   Email: uo@ims.ac.jp
,
Yasuhiro Uozumi*
Institute for Molecular Science (IMS), Okazaki 444-8787, Japan   Email: uo@ims.ac.jp
› Author Affiliations
This work was supported by the ACCEL program, which is sponsored by the JST. We also acknowledge the financial support for this work provided by the JSPS (Grant-in-Aid for Scientific Research on Innovative Area #2707 ‘Middle Molecular Strategy’).
Further Information

Publication History

Received: 03 August 2017

Accepted after revision: 11 September 2017

Publication Date:
16 October 2017 (online)


Visiting scientist from KANEKA corporation
Dedicated to Professor Victor A. Snieckus on the occasion of his 80th birthday

Abstract

Aryl(dicyclohexyl)phosphines were prepared by a catalytic C–P bond-forming cross-coupling reaction of haloarenes with dicyclohexylphosphine under heterogeneous conditions in water containing an immobilized palladium complex coordinated to an amphiphilic polystyrene–poly(ethylene glycol) resin supported di(tert-butyl)phosphine ligand.

Supporting Information

 
  • References and Notes


    • For recent reviews on C–P cross coupling, see:
    • 1a Tappe FM. J. Trepohl VT. Oestreich M. Synthesis 2010; 3037
    • 1b Glueck DS. Top. Organomet. Chem. 2010; 31: 65
    • 1c Berger O. Petit C. Deal EL. Montchamp J.-L. Adv. Synth. Catal. 2013; 335: 1361

      For studies on C–P coupling reactions with palladium catalysis, see:
    • 2a Machnitzki P. Nickel T. Stelzer O. Landgrafe C. Eur. J. Inorg. Chem. 1998; 1029
    • 2b Kwong FY. Chan KS. Chem. Commun. 2000; 1069
    • 2c Damian K. Clarke ML. Cobley CJ. Appl. Organometal. Chem. 2009; 23: 272 ; see also ref. 1c
  • 3 For a pioneering study on C–P coupling reaction of arylhalides and dicyclohexylphosphine, see: Murada M. Buchwald SL. Tetrahedron 2004; 60: 7397

    • For studies on cross-coupling in water with polymeric palladium complexes from the author’s group (selected publications), see for Suzuki–Miyaura coupling:
    • 4a Uozumi Y. Danjo H. Hayashi T. J. Org. Chem. 1999; 64: 3384
    • 4b Uozumi Y. Nakai Y. Org. Lett. 2002; 4: 2997

    • Heck reaction:
    • 4c Uozumi Y. Kimura T. Synlett 2002; 2045

    • Sonogashira reaction:
    • 4d Uozumi Y. Kobayashi Y. Heterocycles 2003; 59: 71

    • Asymmetric alkylation:
    • 4e Uozumi Y. Shibatomi K. J. Am. Chem. Soc. 2001; 123: 2919

    • Asymmetric cross-coupling:
    • 4f Uozumi Y. Matsuura Y. Arakawa T. Yamada YM. A. Angew. Chem. Int. Ed. 2009; 48: 2708

    • Sonogashira coupling:
    • 4g Suzuka T. Okada Y. Ooshiro K. Uozumi Y. Tetrahedron 2010; 66: 1064

    • Allylic arylation:
    • 4h Sarkar SM. Uozumi Y. Yamada YM. A. Angew. Chem. Int. Ed. 2011; 50: 9437

    • Suzuki–Miyaura coupling:
    • 4i Yamada YM. A. Sarkar SM. Uozumi Y. J. Am. Chem. Soc. 2012; 134: 3190

    • Heck reaction:
    • 4j Sato T. Sarkar SM. Uozumi Y. Yamada YM. A. ChemCatChem 2015; 7: 2141

    • Hiyama coupling:
    • 4k Ohtaka A. Kotera T. Sakon A. Ueda K. Hamasaka G. Uozumi Y. Shinagawa T. Shimomura O. Nomura R. Synlett 2016; 27: 1202

    • Asymmetric C–C coupling:
    • 4l Uozumi Y. Matsuura Y. Suzuka T. Arakawa Y. Yamada YM. A. Synthesis 2017; 49: 59
    • 5a Hirai Y. Uozumi Y. Chem. Asian J. 2010; 5: 1788
    • 5b Hirai Y. Uozumi Y. Chem. Commun. 2010; 45: 1103
  • 6 Hirai Y. Uozumi Y. Chem. Lett. 2011; 40: 934

    • For recent reviews on heterogeneous-switching of transition-metal catalysis, see:
    • 7a Uozumi Y. Immobilized Catalysts Solid Phases, Immobilization and Applications. In Topics in Current Chemistry. Vol. 242. Kirschning A. Springer; Berlin: 2004: 77 ; DOI: 10.1007/b96874
    • 7b Guinó M. Hii KK. M. Chem. Soc. Rev. 2007; 36: 608
    • 7c Wang Z. Chen G. Ding K. Chem. Rev. 2009; 109: 322
    • 7d Lu J. Toy PH. Chem. Rev. 2009; 109: 815
    • 7e Lamblin M. Nassar-Hardy L. Hierso J.-C. Fouquet E. Felpin F.-X. Adv. Synth. Catal. 2010; 352: 33
    • 7f Hierso J.-C. Uozumi Y. Synlett 2016; 27: 1177

      For recent reviews on aqueous-switching of organic reactions, see:
    • 8a Jessop PG. Green Chem. 2011; 13: 1391
    • 8b Simon M.-O. Li C.-J. Chem. Soc. Rev. 2012; 41: 1415
    • 8c Dixneuf PH. Cadierno V. Metal-Catalyzed Reactions in Water . Wiley-VCH; Weinheim: 2013
    • 8d Zhang F. Li H. Chem. Sci. 2014; 5: 3695
  • 9 It has been reported that coordination ability of tricyclohexylphosphine to palladium is 580 times larger than dicyclohexylphenylphosphine to indicate high coordinating potential of PS-PEG-supported trialkylphosphine lighands. Minakawa M. Takenaka K. Uozumi Y. Eur. J. Inorg. Chem. 2007; 1629
    • 10a Van Allen D. Venkataraman D. J. Org. Chem. 2003; 68: 4591
    • 10b Gelman D. Jiang L. Buchwald SL. Org. Lett. 2003; 5: 2315
    • 10c Tani K. Behenna DC. McFadden RM. Stoltz BM. Org. Lett. 2007; 9: 2529
    • 10d Zhang H. Zhang X.-Y. Dong D.-Q. Wang Z.-L. RCS Adv. 2015; 65: 52824
  • 11 Cai D. Hughes DL. Verhoeven TR. Reider PJ. Tetrahedron Lett. 1995; 36: 7991
  • 12 General Procedure for the Catalytic Phosphinylation of Haloarenes A mixture of L1 (480 mg, 0.10 mmol of P), [PdCl(η3-C3H5)]2 (9 mg, 0.025 mmol), arylhalides (1, 0.55 mmol), and dicyclohexylphosphine (2, 99 mg, 0.50 mmol) in 20 M KOH aqueous solution (0.5–1.0 mL) under nitrogen atmosphere was agitated with shaking for several hours upon heating at 100 °C. After being cooled, the reaction mixture was filtered, and the aqueous filtrate was extracted with degassed toluene (2 × 2 mL). Recovered catalyst resin beads were extracted with degassed toluene (4 × 2 mL). The combined extract was dried over anhydrous Na2SO4 and concentrated in vacuo to give a crude residue. The residue was purified by silica gel flash chromatography (eluent: degassed n-hexane/Et2O = 10:0 to 9:1) to give an aryldicyclohexylphosphine 3. Selected Data Dicyclohexylphenylphosphine (3a; Table 1 Entry 1) CAS: 6476-37-5; yellow oil; 123 mg (90% yield). 1H NMR (500 MHz, CDCl3, 25 °C): δ = 7.37–7.42 (m, 2 H), 7.25–7.27 (m, 3 H), 1.51–1.86 (m, 12 H), 0.88–1.29 (m, 10 H). MS (ESI+): m/z = 274 [M+]. 2-(Dicyclohexylphosphine)biphenyl (3p; Scheme 4) CAS: 247940-06-3; colorless solid; 142 mg (81% yield); mp 78–80 °C. 1H NMR (500 MHz, CDCl3, 25 °C): δ = 7.58–7.60 (m, 1 H), 7.25–7.38 (m, 8 H), 1.55–1.84 (m, 12 H), 1.00–1.27 (m, 10 H). MS (ESI+): m/z = 350 [M+].
  • 13 Compound 3p (CAS : 247940-06-3): Kendall AJ. Zakharov LN. Tyler DR. Inorg. Chem. 2016; 55: 3079 ; and references cited therein
  • 14 Compound 3q (CAS 180260-74-6): Ikeda R. Kuwano R. Chem. Eur. J. 2016; 25: 8610 ; and references cited therein
  • 15 Because of the unique reactivity as well as the coordinating ability of the substrates (R2PH) and the products (R2ArP), thorough condition screening should be required for each individual substrate. Thus, for examples, the coupling of Ph2PH and t-Bu2PH with PhBr gave only 33% and <10% of the products, Ph3P and t-Bu2PhP, respectively, under the present conditions.