Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2017; 28(20): 2966-2970
DOI: 10.1055/s-0036-1590926
DOI: 10.1055/s-0036-1590926
letter
Preparation of Aryl(dicyclohexyl)phosphines by C–P Bond-Forming Cross-Coupling in Water Catalyzed by an Amphiphilic-Resin-Supported Palladium Complex
This work was supported by the ACCEL program, which is sponsored by the JST. We also acknowledge the financial support for this work provided by the JSPS (Grant-in-Aid for Scientific Research on Innovative Area #2707 ‘Middle Molecular Strategy’).Further Information
Publication History
Received: 03 August 2017
Accepted after revision: 11 September 2017
Publication Date:
16 October 2017 (online)
◊ Visiting scientist from KANEKA corporation
Dedicated to Professor Victor A. Snieckus on the occasion of his 80th birthday
Abstract
Aryl(dicyclohexyl)phosphines were prepared by a catalytic C–P bond-forming cross-coupling reaction of haloarenes with dicyclohexylphosphine under heterogeneous conditions in water containing an immobilized palladium complex coordinated to an amphiphilic polystyrene–poly(ethylene glycol) resin supported di(tert-butyl)phosphine ligand.
Key words
phosphines - haloarenes - C–P bond - cross-coupling - aqueous media - polymer support - palladiumSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0036-1590926 and from the author.
- Supporting Information
-
References and Notes
- 1a Tappe FM. J. Trepohl VT. Oestreich M. Synthesis 2010; 3037
- 1b Glueck DS. Top. Organomet. Chem. 2010; 31: 65
- 1c Berger O. Petit C. Deal EL. Montchamp J.-L. Adv. Synth. Catal. 2013; 335: 1361
- 2a Machnitzki P. Nickel T. Stelzer O. Landgrafe C. Eur. J. Inorg. Chem. 1998; 1029
- 2b Kwong FY. Chan KS. Chem. Commun. 2000; 1069
- 2c Damian K. Clarke ML. Cobley CJ. Appl. Organometal. Chem. 2009; 23: 272 ; see also ref. 1c
- 3 For a pioneering study on C–P coupling reaction of arylhalides and dicyclohexylphosphine, see: Murada M. Buchwald SL. Tetrahedron 2004; 60: 7397
- 4a Uozumi Y. Danjo H. Hayashi T. J. Org. Chem. 1999; 64: 3384
- 4b Uozumi Y. Nakai Y. Org. Lett. 2002; 4: 2997
- 4c Uozumi Y. Kimura T. Synlett 2002; 2045
- 4d Uozumi Y. Kobayashi Y. Heterocycles 2003; 59: 71
- 4e Uozumi Y. Shibatomi K. J. Am. Chem. Soc. 2001; 123: 2919
- 4f Uozumi Y. Matsuura Y. Arakawa T. Yamada YM. A. Angew. Chem. Int. Ed. 2009; 48: 2708
- 4g Suzuka T. Okada Y. Ooshiro K. Uozumi Y. Tetrahedron 2010; 66: 1064
- 4h Sarkar SM. Uozumi Y. Yamada YM. A. Angew. Chem. Int. Ed. 2011; 50: 9437
- 4i Yamada YM. A. Sarkar SM. Uozumi Y. J. Am. Chem. Soc. 2012; 134: 3190
- 4j Sato T. Sarkar SM. Uozumi Y. Yamada YM. A. ChemCatChem 2015; 7: 2141
- 4k Ohtaka A. Kotera T. Sakon A. Ueda K. Hamasaka G. Uozumi Y. Shinagawa T. Shimomura O. Nomura R. Synlett 2016; 27: 1202
- 4l Uozumi Y. Matsuura Y. Suzuka T. Arakawa Y. Yamada YM. A. Synthesis 2017; 49: 59
- 5a Hirai Y. Uozumi Y. Chem. Asian J. 2010; 5: 1788
- 5b Hirai Y. Uozumi Y. Chem. Commun. 2010; 45: 1103
- 6 Hirai Y. Uozumi Y. Chem. Lett. 2011; 40: 934
- 7a Uozumi Y. Immobilized Catalysts Solid Phases, Immobilization and Applications. In Topics in Current Chemistry. Vol. 242. Kirschning A. Springer; Berlin: 2004: 77 ; DOI: 10.1007/b96874
- 7b Guinó M. Hii KK. M. Chem. Soc. Rev. 2007; 36: 608
- 7c Wang Z. Chen G. Ding K. Chem. Rev. 2009; 109: 322
- 7d Lu J. Toy PH. Chem. Rev. 2009; 109: 815
- 7e Lamblin M. Nassar-Hardy L. Hierso J.-C. Fouquet E. Felpin F.-X. Adv. Synth. Catal. 2010; 352: 33
- 7f Hierso J.-C. Uozumi Y. Synlett 2016; 27: 1177
- 8a Jessop PG. Green Chem. 2011; 13: 1391
- 8b Simon M.-O. Li C.-J. Chem. Soc. Rev. 2012; 41: 1415
- 8c Dixneuf PH. Cadierno V. Metal-Catalyzed Reactions in Water . Wiley-VCH; Weinheim: 2013
- 8d Zhang F. Li H. Chem. Sci. 2014; 5: 3695
- 9 It has been reported that coordination ability of tricyclohexylphosphine to palladium is 580 times larger than dicyclohexylphenylphosphine to indicate high coordinating potential of PS-PEG-supported trialkylphosphine lighands. Minakawa M. Takenaka K. Uozumi Y. Eur. J. Inorg. Chem. 2007; 1629
- 10a Van Allen D. Venkataraman D. J. Org. Chem. 2003; 68: 4591
- 10b Gelman D. Jiang L. Buchwald SL. Org. Lett. 2003; 5: 2315
- 10c Tani K. Behenna DC. McFadden RM. Stoltz BM. Org. Lett. 2007; 9: 2529
- 10d Zhang H. Zhang X.-Y. Dong D.-Q. Wang Z.-L. RCS Adv. 2015; 65: 52824
- 11 Cai D. Hughes DL. Verhoeven TR. Reider PJ. Tetrahedron Lett. 1995; 36: 7991
- 12 General Procedure for the Catalytic Phosphinylation of Haloarenes A mixture of L1 (480 mg, 0.10 mmol of P), [PdCl(η3-C3H5)]2 (9 mg, 0.025 mmol), arylhalides (1, 0.55 mmol), and dicyclohexylphosphine (2, 99 mg, 0.50 mmol) in 20 M KOH aqueous solution (0.5–1.0 mL) under nitrogen atmosphere was agitated with shaking for several hours upon heating at 100 °C. After being cooled, the reaction mixture was filtered, and the aqueous filtrate was extracted with degassed toluene (2 × 2 mL). Recovered catalyst resin beads were extracted with degassed toluene (4 × 2 mL). The combined extract was dried over anhydrous Na2SO4 and concentrated in vacuo to give a crude residue. The residue was purified by silica gel flash chromatography (eluent: degassed n-hexane/Et2O = 10:0 to 9:1) to give an aryldicyclohexylphosphine 3. Selected Data Dicyclohexylphenylphosphine (3a; Table 1 Entry 1) CAS: 6476-37-5; yellow oil; 123 mg (90% yield). 1H NMR (500 MHz, CDCl3, 25 °C): δ = 7.37–7.42 (m, 2 H), 7.25–7.27 (m, 3 H), 1.51–1.86 (m, 12 H), 0.88–1.29 (m, 10 H). MS (ESI+): m/z = 274 [M+]. 2-(Dicyclohexylphosphine)biphenyl (3p; Scheme 4) CAS: 247940-06-3; colorless solid; 142 mg (81% yield); mp 78–80 °C. 1H NMR (500 MHz, CDCl3, 25 °C): δ = 7.58–7.60 (m, 1 H), 7.25–7.38 (m, 8 H), 1.55–1.84 (m, 12 H), 1.00–1.27 (m, 10 H). MS (ESI+): m/z = 350 [M+].
- 13 Compound 3p (CAS : 247940-06-3): Kendall AJ. Zakharov LN. Tyler DR. Inorg. Chem. 2016; 55: 3079 ; and references cited therein
- 14 Compound 3q (CAS 180260-74-6): Ikeda R. Kuwano R. Chem. Eur. J. 2016; 25: 8610 ; and references cited therein
- 15 Because of the unique reactivity as well as the coordinating ability of the substrates (R2PH) and the products (R2ArP), thorough condition screening should be required for each individual substrate. Thus, for examples, the coupling of Ph2PH and t-Bu2PH with PhBr gave only 33% and <10% of the products, Ph3P and t-Bu2PhP, respectively, under the present conditions.
For recent reviews on C–P cross coupling, see:
For studies on C–P coupling reactions with palladium catalysis, see:
For studies on cross-coupling in water with polymeric palladium complexes from the author’s group (selected publications), see for Suzuki–Miyaura coupling:
Heck reaction:
Sonogashira reaction:
Asymmetric alkylation:
Asymmetric cross-coupling:
Sonogashira coupling:
Allylic arylation:
Suzuki–Miyaura coupling:
Heck reaction:
Hiyama coupling:
Asymmetric C–C coupling:
For recent reviews on heterogeneous-switching of transition-metal catalysis, see:
For recent reviews on aqueous-switching of organic reactions, see: