Synthesis 2018; 50(03): 644-650
DOI: 10.1055/s-0036-1590936
paper
© Georg Thieme Verlag Stuttgart · New York

Copper-Catalyzed Synthesis of Aryl Thioamides from Aryl Aldehydes and Tetramethylthiuram Disulfide

Meng-Tian Zeng
School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, P. R. of China   Email: dzb04982@wit.edu.cn
,
Min Wang
School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, P. R. of China   Email: dzb04982@wit.edu.cn
,
Han-Ying Peng
School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, P. R. of China   Email: dzb04982@wit.edu.cn
,
Yu Cheng
School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, P. R. of China   Email: dzb04982@wit.edu.cn
,
Zhi-Bing Dong*
School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, P. R. of China   Email: dzb04982@wit.edu.cn
› Author Affiliations
We thank the financial support from National Natural Science Foundation of China (21302150), Hubei Provincial Department of Education (D20131501), Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry [2012]1707, foundation of Chutian distinguished fellow from Hubei Provincial Department of Education, and the foundation of High-end Talent Cultivation Program from Wuhan Institute of Technology.
Further Information

Publication History

Received: 03 September 2017

Accepted after revision: 25 September 2017

Publication Date:
12 October 2017 (online)


§ These authors contributed equally to this work

Dedicated to Professor Herbert Mayr at Ludwig-Maximilians Universität on the occasion of his 70th birthday.

Abstract

A novel and convenient method for the synthesis of aryl thioamides from aryl aldehydes and tetramethylthiuram disulfide (TMTD) without the use of sulfurating reagent was explored. In the presence of CuI and di-tert-butyl peroxide (DTBP), various aryl thioamides were prepared with good to excellent yields, tetramethylthiuram disulfide as thioamide source is essential for this transformation. The protocol features broad substrate scope, nice yields, operability and commercially available and inexpensive raw materials, showing its practical synthetic value in organic synthesis.

Supporting Information

 
  • References

  • 1 Bach A. Eildal JN. N. Stuhr-Hansen N. Deeskamp R. Gottschalk M. Pedersen SW. Kristensen AS. Strømgaard K. J. Med. Chem. 2011; 54: 1333
  • 2 Angehrn P. Goetschi E. Gmuender H. Hebeisen P. Hennig M. Kuhn B. Luebbers T. Reindl P. Ricklin F. Schmitt-Hoffmann A. J. Med. Chem. 2011; 54: 2207
  • 3 Lincke T. Behnken S. Ishida K. Roth M. Hertweck C. Angew. Chem. Int. Ed. 2010; 122: 2055
  • 4 Mehanna AS. Belani JD. Kelley CJ. Pallansc LA. J. Med. Chem. 2007; 3: 513
  • 5 Jagodzinski TS. Chem. Rev. 2003; 103: 197
    • 6a Jaseer EA. Prasad DJ. C. Dandapat A. Sekar G. Tetrahedron Lett. 2010; 51: 5009
    • 6b Zeng MT. Xu W. Liu M. Liu X. Chang CZ. Zhu H. Dong ZB. SynOpen 2017; 1: 1
    • 6c Joyce LL. Batey RA. Org. Lett. 2009; 11: 2792
    • 6d Inamoto K. Hasegawa C. Kawasaki J. Hiroya K. Doi T. Adv. Synth. Catal. 2010; 352: 2643
    • 6e Sharma S. Pathare RS. Maurya AK. Gopal K. Roy TK. Sawant DM. Pardasani RT. Org. Lett. 2016; 18: 356
  • 7 Murai T. Hori F. Maruyama T. Org. Lett. 2011; 13: 1718
  • 8 Gopinath P. Watanabe T. Shibasaki M. J. Org. Chem. 2012; 77: 9260
  • 9 Suzuki Y. Yazaki R. Kumagai N. Shibasaki M. Angew. Chem. Int. Ed. 2009; 48: 5026
  • 10 Babudri F. Fiandanese V. Marchese G. Synlett 1994; 719
    • 11a Ozturk T. Ertas E. Mert O. Chem. Rev. 2007; 107: 5210
    • 11b Coats SJ. Link JS. Hlasta DJ. Org. Lett. 2003; 5: 721
    • 11c Hori T. Otani Y. Kawahata M. Yamaguchi K. Ohwada T. J. Org. Chem. 2008; 73: 9102
    • 12a Priebbenow LD. Bolm C. Chem. Soc. Rev. 2013; 42: 7870
    • 12b Qu YY. Li ZK. Xiang HF. Zhou XG. Adv. Synth. Catal. 2013; 355: 3141
    • 12c Kumar S. Vanjari R. Guntreddi T. Singh KN. Tetrahedron 2016; 72: 2012
    • 13a Yang CH. Li GJ. Gong CJ. Li YM. Tetrahedron 2015; 71: 637
    • 13b Cho D. Ahn J. Castro KA. D. Ahn H. Rhee H. Tetrahedron 2010; 66: 5583
  • 14 Kaboudin B. Malekzadeh L. Synlett 2011; 2807
  • 15 Charette AB. Grenon M. J. Org. Chem. 2003; 68: 5792
  • 16 Wei JP. Li YM. Jiang XF. Org. Lett. 2016; 18: 340
  • 17 Yadav AK. Srivastava VP. Yadav LD. S. Tetrahedron Lett. 2012; 53: 7113
    • 18a Zeng MT. Xu W. Liu M. Liu X. Chang CZ. Zhu H. Dong ZB. Synth. Commun. 2017; 47: 1434
    • 18b Dong ZB. Wang M. Zhu H. Liu X. Chang CZ. Synthesis 2017; 49 DOI: 10.1055/s-0036-1588545.
    • 19a Bi XJ. Li JC. Shi EX. Wang HM. Gao RL. Xiao JH. Tetrahedron 2016; 72: 8210
    • 19b Liu CH. Zhou L. Jiang D. Gu YL. Eur. J. Org. Chem. 2016; 367