Subscribe to RSS
DOI: 10.1055/s-0036-1590940
Pd-Catalyzed One-Pot Borylation/Intramolecular Asymmetric Arylation on α-Ketiminoamides: Innovative Approach to Chiral 3-Amino-2-oxindoles
We are grateful for the award of a post-doctoral grant to C.S.M. (FRH/BPD/92394/2013) from the Fundação para a Ciência e a Tecnologia (FCT). The authors gratefully acknowledge Fundo Europeu de Desenvolvimento Regional (FEDER)-INALENTEJO for funding the program INMOLFARM – Molecular Innovation and Drug Discovery (ALENT-07-0224-FEDER-001743) and for financing the acquisition of the NMR equipment, project LADECA (ALENT-07-0262-FEDER-001878). S.E.L. thanks University College Cork 2013 Research Fund and Science Foundation Ireland under grant no. 05/PICA/B802/EC07.Publication History
Received: 30 August 2017
Accepted after revision: 04 October 2017
Publication Date:
03 November 2017 (online)
Abstract
3-Amino-2-oxindole derivatives are a common framework found in many natural products and medicinal compounds and thus their synthesis is of significant importance. We report for the first time a one-pot approach for the synthesis of these compounds, using a borylation/intramolecular asymmetric arylation sequence starting from ortho-bromo-α-ketimino amide derivatives. Pd(OAc)2 was used as the pre-catalyst along with (R)-BINAP as the chiral source. We successfully obtained a family of 3-phenyl-3-(aryl-amino)-indolin-2-one derivatives (11 in total) with excellent yields (up to 98%) and enantioselectivities of up to 76% ee. The reaction is versatile and tolerant of a wide range of functional groups.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0036-1590940.
- Supporting Information
-
References and Notes
- 1a Zhou F. Liu Y.-L. Zhou J. Adv. Synth. Catal. 2010; 352: 1381
- 1b Rudrangi SR. S. Bontha VK. Manda VR. Bethi S. Asian J. Res. Chem. 2011; 4: 335
- 1c Trost M. Brennan MK. Synthesis 2009; 3003
- 2a Gal CS.-L. Wagnon J. Simiand J. Griebel G. Lacour C. Guillon G. Barberis C. Brossard G. Soubrié P. Nisato D. Pascal M. Pruss R. Scatton B. Maffrand J.-P. Le Fur G. J. Pharmacol. Exp. Ther. 2002; 300: 1122
- 2b Ochi M. Kawasaki K. Kataoka H. Uchio Y. Nishi H. Biochem. Biophys. Res. Commun. 2001; 283: 1118
- 2c Ali MA. Ismail R. Choon TS. Yoon YK. Wei AC. Pandian S. Kumar RS. Osman H. Manogaran E. Bioorg. Med. Chem. Lett. 2010; 20: 7064
- 2d Rottmann M. McNamara C. Yeung BK. S. Lee MC. S. Zou B. Russell B. Seitz P. Plouffe DM. Dharia NV. Tan J. Cohen SB. Spencer R. González-Páez GA. Lakshminarayana SB. Goh A. Suwanarusk R. Jegla T. Schmitt EK. Beck H.-P. Brun R. Nosten F. Renia L. Dartois V. Keller TH. Fidock DA. Winzeler EA. Diagana TT. Science 2010; 329: 1175
- 3 Marques CS. Burke AJ. Eur. J. Org. Chem. 2016; 806
- 4a Kaur J. Chimni SS. Mahajan S. Kumar A. RSC Adv. 2015; 5: 52481
- 4b Lesma G. Landoni N. Pilati T. Sacchetti A. Silvani A. J. Org. Chem. 2009; 74: 4537
- 4c Shen K. Liu X. Lin L. Feng X. Chem. Sci. 2012; 3: 327
- 5a Kumagai N. Shibasaki M. Bull. Chem. Soc. Jpn. 2015; 88: 503
- 5b Burke AJ. Tetrahedron Lett. 2016; 57: 1197
- 6 Catalytic Arylation Methods: From the Academic Lab to Industrial Processes . Burke AJ. Marques CS. Wiley-VCH; Weinheim: 2015
- 7 Tolstoy P. Lee SX. Y. Sparr C. Ley SV. Org. Lett. 2012; 14: 4810
- 8a Marques CS. Peixoto D. Burke AJ. RSC Adv. 2015; 5: 20108
- 8b Peixoto D. Viana H. Goth A. Marques CS. Burke AJ. WO 2015033261, 2015
- 8c Marques CS. Burke AJ. ChemCatChem 2011; 3: 635
- 8d Marques CS. Burke AJ. Tetrahedron 2013; 69: 10091
- 8e Marques CS. Locati A. Ramalho JP. P. Burke AJ. Tetrahedron 2015; 71: 3314
- 8f Marques CS. Burke AJ. Tetrahedron: Asymmetry 2013; 24: 628
- 8g Marques CS. Dindaroglu M. Schmalz H.-G. Burke AJ. RSC Adv. 2014; 4: 6035
- 8h Marques CS. Burke AJ. Eur. J. Org. Chem. 2012; 4232
- 8i Marques CS. Burke AJ. Eur. J. Org. Chem. 2010; 1639
- 8j Marques CS. Burke AJ. Tetrahedron 2012; 68: 7211
- 8k Marques CS. Burke AJ. ChemCatChem 2016; 8: 3518
- 9 Shin I. Ramgren SD. Krische MJ. Tetrahedron 2015; 71: 5776
- 10a Ishiyama T. Murata M. Miyaura N. J. Org. Chem. 1995; 60: 7508
- 10b Broutin P.-E. Cÿerna I. Campaniello M. Leroux F. Colobert F. Org. Lett. 2004; 6: 4419
- 11a Jiang C. Lu Y. Hayashi T. Angew. Chem. Int. Ed. 2014; 53: 9936
- 11b Yang G. Zhang W. Angew. Chem. Int. Ed. 2013; 52: 7540
- 12a Noyori R. Takaya H. Acc. Chem. Res. 1990; 23: 345
- 12b Akutagawa S. Appl. Catal., A 1995; 128: 171
- 13a Feringa BL. Acc. Chem. Res. 2000; 33: 346
- 13b Teichert JF. Feringa BL. Angew. Chem. Int. Ed. 2010; 49: 2486
- 14 Desimoni G. Faita G. Jørgensen KA. Chem. Rev. 2006; 106: 3561
- 15a Glorius F. Angew. Chem. Int. Ed. 2004; 43: 3364
- 15b Shintani R. Hayashi T. Aldrichimica Acta 2009; 42: 31
- 16 CCDC 1571646 contains the supplementary crystallographic data for 2a. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.
- 17a Fang H. Kaur G. Yan J. Wang B. Tetrahedron Lett. 2005; 46: 1671
- 17b Chow WK. Yuen OY. Choy PY. So CM. Lau CP. Wong WT. Kwong FY. RSC Adv. 2013; 3: 12518
- 17c Takaya J. Iwasawa N. ACS Catal. 2012; 2: 1993
- 17d Molander GA. Trice SL. J. Dreher SD. J. Am. Chem. Soc. 2010; 132: 17701
- 18 General Procedure for the Asymmetric Synthesis of Chiral 3-Amino-2-oxindolesIn a Radley’s® 12 position carousel reactor under a nitrogen atmosphere was added Pd(OAc)2 (0.0125 mmol, 5 mol%), chiral ligand (0.025 mmol, 10 mol%), and 1,4-dioxane (1 mL). The mixture was stirred for 30 min at room temperature, then the corresponding ortho-bromo-α-ketimino amide substrate 1 (0.25 mmol), B2Pin2 (0.28 mmol, 1.1 equiv), KOAc (0.76 mmol), and 1,4-dioxane (1 mL) were added sequentially to the reaction vessel. The reaction was left stirring at 100 °C during 18 h. After cooling to room temperature, the crude mixture was purified by silica gel chromatography using hexane/AcOEt (5:1) as eluent to afford the desired 3-phenyl-3-(aryl-amino)-indolin-2-one derivatives 2.Compound 2a: Pale yellow solid; mp 86.2–87.8 °C. 1H NMR (400 MHz, CDCl3) δ = 3.26 (s, CH3, 3 H), 6.34–6.36 (d, Ar, 2 H, J = 8 Hz), 6.67–6.71 (t, Ar, 1 H, J = 8 Hz), 6.92–6.94 (d, Ar, 1 H, J = 8 Hz), 6.98–7.02 (t, Ar, 2 H, J = 8 Hz), 7.08–7.12 (t, Ar, 1 H, J = 8 Hz), 7.33–7.42 (m, Ar, 5 H), 7.55–7.57 (d, Ar, 2 H, J = 8 Hz). 13C NMR (100 MHz, CDCl3) δ = 26.80, 68.08, 108.90, 115.54, 119.40, 123.32, 125.42, 126.73, 128.73, 129.07, 129.12, 129.51, 130.37, 140.19, 143.28, 145.09, 177.05. FTIR: 1499, 1722, 3055, 3373 cm–1. ESI-HRMS: m/z calcd for C21H18N2O: 314.14191; found for C21H18N2ONa: 337.13113 [M+ + Na]. HPLC: Daicel Chiralpak IA column, n-hexane/i-PrOH = 90:10, 1.0 mL/min, 220 nm; t R = 32.447 min (R, minor), 38.080 min (S, major).
- 19 Lam KC. Marder TB. Lin Z. Organometallics 2010; 29: 1849
For several examples, see:
For some examples, see:
For examples of arylation reactions in ketimines with boronic acids, see:
For selected examples, see: